請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22054完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇剛毅 | |
| dc.contributor.author | Ching Li | en |
| dc.contributor.author | 李晴 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:00:03Z | - |
| dc.date.copyright | 2018-09-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-09 | |
| dc.identifier.citation | 1. Wallace, D.C., Mitochondria and cancer. Nat Rev Cancer, 2012. 12(10): p. 685-98.
2. Vyas, S., E. Zaganjor, and M.C. Haigis, Mitochondria and Cancer. Cell, 2016. 166(3): p. 555-66. 3. Zong, W.X., J.D. Rabinowitz, and E. White, Mitochondria and Cancer. Mol Cell, 2016. 61(5): p. 667-676. 4. Koppenol, W.H., P.L. Bounds, and C.V. Dang, Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011. 11(5): p. 325-37. 5. Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-3. 6. Le, A., et al., Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2037-42. 7. Bosc, C., M.A. Selak, and J.E. Sarry, Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment. Cell Metab, 2017. 26(5): p. 705-707. 8. Gimenez-Bonafe, P., A. Tortosa, and R. Perez-Tomas, Overcoming Drug Resistance by Enhancing Apoptosis of Tumor Cells. Current Cancer Drug Targets, 2009. 9(3): p. 320-340. 9. Lopez, J. and S.W. Tait, Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer, 2015. 112(6): p. 957-62. 10. Ni, H.M., J.A. Williams, and W.X. Ding, Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 2015. 4: p. 6-13. 11. Kong, B., et al., Mitochondrial dynamics regulating chemoresistance in gynecological cancers. Ann N Y Acad Sci, 2015. 1350: p. 1-16. 12. Twig, G., et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J, 2008. 27(2): p. 433-46. 13. SnapShot: Mitochondrial Dynamics. http://www.cell.com/nucleus-mitochondria-and-metabolism. 14. Chen, H. and D.C. Chan, Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 2009. 18(R2): p. R169-76. 15. Abuarab, N., et al., High glucose-induced ROS activates TRPM2 to trigger lysosomal membrane permeabilization and Zn(2+)-mediated mitochondrial fission. Sci Signal, 2017. 10(490). 16. Anderson, G.R., et al., Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat Commun, 2018. 9(1): p. 1677. 17. Krause, D.S. and R.A. Van Etten, Tyrosine kinases as targets for cancer therapy. N Engl J Med, 2005. 353(2): p. 172-87. 18. Organ, S.L. and M.S. Tsao, An overview of the c-MET signaling pathway. Ther Adv Med Oncol, 2011. 3(1 Suppl): p. S7-S19. 19. Nakamura, T., et al., Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest, 2000. 106(12): p. 1511-9. 20. Matsumoto, K. and T. Nakamura, Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int, 2001. 59(6): p. 2023-38. 21. Huh, C.G., et al., Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4477-82. 22. Borowiak, M., et al., Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A, 2004. 101(29): p. 10608-13. 23. Comoglio, P.M., S. Giordano, and L. Trusolino, Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov, 2008. 7(6): p. 504-16. 24. Wajih, N., Vascular Origin of a Soluble Truncated Form of the Hepatocyte Growth Factor Receptor (c-met). Circulation Research, 2001. 90(1): p. 46-52. 25. Athauda, G., et al., c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res, 2006. 12(14 Pt 1): p. 4154-62. 26. Fu, L., et al., Shedding of c-Met ectodomain correlates with c-Met expression in non-small cell lung cancer. Biomarkers, 2013. 18(2): p. 126-35. 27. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. 28. Blandin Knight, S., et al., Progress and prospects of early detection in lung cancer. Open Biol, 2017. 7(9). 29. Kerr, K.M., Pulmonary preinvasive neoplasia. Journal of Clinical Pathology, 2001. 54(4): p. 257-271. 30. Couraud, S., et al., Lung cancer in never smokers--a review. Eur J Cancer, 2012. 48(9): p. 1299-311. 31. Gridelli, C., et al., Non-small-cell lung cancer. Nat Rev Dis Primers, 2015. 1: p. 15009. 32. Farhat, F.S. and W. Houhou, Targeted therapies in non-small cell lung carcinoma: what have we achieved so far? Ther Adv Med Oncol, 2013. 5(4): p. 249-70. 33. Pao, W., et al., EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13306-11. 34. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500. 35. Morgillo, F., et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016. 1(3): p. e000060. 36. Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 1039-43. 37. Shi, P., et al., Met gene amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer treatment. Cancer Lett, 2016. 380(2): p. 494-504. 38. Guo, T., et al., Quantitative proteomics discloses MET expression in mitochondria as a direct target of MET kinase inhibitor in cancer cells. Mol Cell Proteomics, 2010. 9(12): p. 2629-41. 39. Yang, T., et al., Mitochondrial-Targeting MET Kinase Inhibitor Kills Erlotinib-Resistant Lung Cancer Cells. ACS Med Chem Lett, 2016. 7(8): p. 807-12. 40. Peng, J.Y., et al., Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol, 2011. 7(10): p. e1002212. 41. Gao, H.F., et al., Plasma dynamic monitoring of soluble c-Met level for EGFR-TKI treatment in advanced non-small cell lung cancer. Oncotarget, 2016. 7(26): p. 39535-39543. 42. Lv, H., et al., Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. Biomed Res Int, 2015. 2015: p. 626578. 43. Ma, P.C., et al., c-MET mutational analysis in small cell lung cancer: Novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Research, 2003. 63(19): p. 6272-6281. 44. Frampton, G.M., et al., Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov, 2015. 5(8): p. 850-9. 45. Awad, M.M., et al., MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J Clin Oncol, 2016. 34(7): p. 721-30. 46. Peschard, P., et al., Mutation of the c-Cbl TKB Domain Binding Site on the Met Receptor Tyrosine Kinase Converts It into a Transforming Protein. Molecular Cell, 2001. 8(5): p. 995-1004. 47. Tan, Y.H., et al., CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One, 2010. 5(1): p. e8972. 48. Heist, R.S., et al., MET Exon 14 Skipping in Non-Small Cell Lung Cancer. Oncologist, 2016. 21(4): p. 481-6. 49. Awad, M.M., Impaired c-Met Receptor Degradation Mediated by MET Exon 14 Mutations in Non-Small-Cell Lung Cancer. J Clin Oncol, 2016. 34(8): p. 879-81. 50. Baar, M.P., et al., Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 2017. 169(1): p. 132-147 e16. 51. Birchmeier, C., et al., Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 2003. 4(12): p. 915-25. 52. Boland, J.M., et al., MET and EGFR mutations identified in ALK-rearranged pulmonary adenocarcinoma: molecular analysis of 25 ALK-positive cases. J Thorac Oncol, 2013. 8(5): p. 574-81. 53. Booth, L., et al., The afatinib resistance of in vivo generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling. Oncotarget, 2016. 7(15): p. 19620-30. 54. Cai, J., et al., ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis, 2016. 7(11): p. e2459. 55. Cao, X., et al., miR-19a contributes to gefitinib resistance and epithelial mesenchymal transition in non-small cell lung cancer cells by targeting c-Met. Sci Rep, 2017. 7(1): p. 2939. 56. Chan, D.C., Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006. 22: p. 79-99. 57. Chang, C.R. and C. Blackstone, Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci, 2010. 1201: p. 34-9. 58. Che, T.F., et al., Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget, 2015. 6(35): p. 37349-66. 59. Chen, T., et al., Mecp2-mediated Epigenetic Silencing of miR-137 Contributes to Colorectal Adenoma-Carcinoma Sequence and Tumor Progression via Relieving the Suppression of c-Met. Sci Rep, 2017. 7: p. 44543. 60. Cortot, A.B., et al., Exon 14 Deleted MET Receptor as a New Biomarker and Target in Cancers. J Natl Cancer Inst, 2017. 109(5). 61. Dharmaraja, A.T., Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem, 2017. 60(8): p. 3221-3240. 62. Du, Y., et al., Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med, 2016. 22(2): p. 194-201. 63. Fulda, S., L. Galluzzi, and G. Kroemer, Targeting mitochondria for cancer therapy. Nat Rev Drug Discov, 2010. 9(6): p. 447-64. 64. Gomes, L.C., G. Di Benedetto, and L. Scorrano, During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol, 2011. 13(5): p. 589-98. 65. Goo, M.S., et al., Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol, 2017. 66. Griparic, L., T. Kanazawa, and A.M. van der Bliek, Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol, 2007. 178(5): p. 757-64. 67. Ho, T.T., et al., Autophagy maintains the metabolism and function of young and old stem cells. Nature, 2017. 543(7644): p. 205-210. 68. Holohan, C., et al., Cancer drug resistance: an evolving paradigm. Nat Rev Cancer, 2013. 13(10): p. 714-26. 69. Indran, I.R., et al., Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta, 2011. 1807(6): p. 735-45. 70. Ishihara, N., Y. Eura, and K. Mihara, Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci, 2004. 117(Pt 26): p. 6535-46. 71. Islam, M.N., et al., Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med, 2012. 18(5): p. 759-65. 72. Jorge, S.E., et al., Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation. Lung Cancer, 2015. 90(3): p. 369-74. 73. Karasaki, T., et al., Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci, 2017. 108(2): p. 170-177. 74. Liu, S.Y., et al., The Unique Characteristics of MET Exon 14 Mutation in Chinese Patients with NSCLC. J Thorac Oncol, 2016. 11(9): p. 1503-10. 75. Okon, I.S., et al., Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem, 2015. 290(14): p. 9101-10. 76. Okon, I.S. and M.H. Zou, Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharmacol Res, 2015. 100: p. 170-4. 77. Ortiz-Zapater, E., et al., MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition. PLoS One, 2017. 12(1): p. e0170798. 78. Qiu, T., et al., Distinct MET Protein Localization Associated With MET Exon 14 Mutation Types in Patients With Non-small-cell Lung Cancer. Clin Lung Cancer, 2017. 79. Salgia, R., MET in Lung Cancer: Biomarker Selection Based on Scientific Rationale. Mol Cancer Ther, 2017. 16(4): p. 555-565. 80. Song, Z., et al., MET Gene Amplification and Overexpression in Chinese Non-Small-Cell Lung Cancer Patients Without EGFR Mutations. Clin Lung Cancer, 2017. 18(2): p. 213-219 e2. 81. Soubannier, V., et al., Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One, 2012. 7(12): p. e52830. 82. Takenaka, T., et al., Gefitinib Enhances Mitochondrial Biological Functions in NSCLCs with EGFR Mutations at a High Cell Density. Anticancer Res, 2017. 37(9): p. 4779-4788. 83. Thomou, T., et al., Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017. 542(7642): p. 450-455. 84. Tovar, E.A. and C.R. Graveel, MET in human cancer: germline and somatic mutations. Ann Transl Med, 2017. 5(10): p. 205. 85. Tsuyama, T., et al., Mitochondrial dysfunction induces dendritic loss via eIF2alpha phosphorylation. J Cell Biol, 2017. 216(3): p. 815-834. 86. Wang, W., et al., Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res, 2009. 15(21): p. 6630-8. 87. Wang, X., et al., WP1130 attenuates cisplatin resistance by decreasing P53 expression in non-small cell lung carcinomas. Oncotarget, 2017. 8(30): p. 49033-49043. 88. Wei, Y., et al., CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signaling in ovarian cancer cells. Biosci Rep, 2017. 89. Xie, M., et al., Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer, 2013. 49(16): p. 3559-72. 90. Yano, S., et al., Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res, 2008. 68(22): p. 9479-87. 91. Yerushalmi, G.M., et al., Met-HGF/SF signal transduction induces mimp, a novel mitochondrial carrier homologue, which leads to mitochondrial depolarization. Neoplasia, 2002. 4(6): p. 510-22. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22054 | - |
| dc.description.abstract | 粒線體是細胞維持生理運作的中樞,在癌症中更是參與了腫瘤增生,對癌細胞適應環境具有支持性的作用。隨著癌症治療中伴隨的抗藥性問題日益嚴重,探討粒線體在癌症抗藥中所扮演的角色有機會為癌症治療提供一個新的標的。本篇研究中我們以肺腺癌細胞作為研究模型,透過粒線體螢光染色進行影像分析,建立一套癌症抗藥性評估用的粒線體監控方法。選用細胞為HCC827及PC9細胞株,帶有表皮生長因子接受器(epidermal growth factor receptor, EGFR)基因突變,而EGFR突變正是發生在亞洲非小細胞肺癌(non-small cell lung cancer, NSCLC)病人中最大比例的突變。臨床上治療帶有EGFR突變的案例通常會給與病人針對EGFR的標靶藥物酪胺酸激酶抑制劑(tyrosine kinase inhibitors, TKI),但是病人多半會於一年左右產生抗藥性,這也成為臨床治療上的困境。已知受體酪胺酸激酶c-Met是造成EGFR-TKI抗藥的其中一條途徑,然而詳細機制目前尚不清楚。本篇研究中我們設計了一套針對c-Met激酶區段外顯子14到21的引子,以期供臨床檢驗c-Met突變檢測使用。另外我們試圖解析c-Met在我們的細胞模型中於抗藥機制所扮演的角色,透過西方點墨法分析發現c-Met在我們的兩種細胞株中可能具有不同功能。同時我們利用前述的粒線體監控方法嘗試分析粒線體與c-Met於抗藥機制中是否有相互調控的關係,然而沒有發現在抗藥性及非抗藥性細胞株中粒線體分型出現差異,免疫螢光染色也沒有觀察到c-Met與粒線體螢光明顯重合的現象。這些結果暗示c-Met在細胞中透過調控粒線體達成細胞對EGFR-TKI抗藥此一假設在實驗室的HCC827及PC9細胞株中並不成立,然而這樣的調控機制是否會存在於其他c-Met有大量表現的細胞中尚需進一步研究。 | zh_TW |
| dc.description.abstract | Mitochondria are important bioenergetic and biosynthetic organelles, providing cell energy, controlling cell metabolism, and mediating cell death. In cancer, mitochondria play an important role in tumorigenesis, supporting cancer cells adapt to the environment. As drug resistance of cancer therapy has become a troubling problem, exploring the role of mitochondria in drug resistance may provide a potential cancer therapy target on mitochondria. Here we used lung adenocarcinoma cell lines as models, accessing to image-dependent mitochondrial screening strategies for cancer drug resistance evaluation. The chosen cell lines HCC827 and PC9 harbor EGFR mutant, which occurs as a majority in non-small cell lung cancer (NSCLC) mutation in Asia. EGFR tyrosine kinase inhibitor (TKI) is a commonly used therapy on patients harboring EGFR-mutation, however also faced with drug-resistance dilemma. One of the pathways to develop EGFR-TKI resistance is through c-Met, however mechanism is still unclear. In this research we designed 7 pairs of primers for c-Met exon 14 to 21 mutation sequencing. On the other hand we tried to examine the role of c-Met in drug-resistance in our cell models, and through Western blotting we found that c-Met may have different roles in the two cell models. Besides, with mitochondria screening strategies described previously, we attempted to resolve the relationship between mitochondria and c-Met in drug-resistance, however we didn’t observe a colocalization between c-Met and mitochondria. These results indicated that our hypothesis didn’t work in our HCC827 and PC9 cells. Whether this hypothesis could be proved in other high c-Met expressing cells is worth investigating. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:00:03Z (GMT). No. of bitstreams: 1 ntu-107-R05424014-1.pdf: 2258773 bytes, checksum: e309c48baded0a656a8e15c739ab91e3 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV 1. Introduction 1 1.1 Mitochondria in cells 2 1.2 Mitochondria and drug resistance in cancer 2 1.3 Mitochondria dynamics 3 1.4 c-Met characteristics 4 1.5 Lung cancer and c-Met mutation 5 1.6 c-Met ,mitochondria, and cancer cells 7 2. Materials and Methods 8 2.1 Lung cancer patient specimens 9 2.2 ELISA for plasma c-Met 9 2.3 Primer designation 10 2.4 Polymerase chain reaction 10 2.5 Cell lines 12 2.6 Drug treatment 13 2.7 Western blotting 13 2.8 Cell viability assay 14 2.9 Immunofluorescence microscopy 14 2.10 Statistical analysis 15 3. Results 16 3.1 Non-small cell lung cancer patients exhibit higher plasma c-Met protein than healthy people 17 3.2 Acquired mutation of c-Met after drug resistance 17 3.3 HGF can induce c-Met phosphorylation and promote resistance to gefitinib 19 3.4 Phospho-c-Met responses in opposite way upon gefitinib treatment in HCC827 and PC9 cells 19 3.5 Mitochondria morphological alteration in CM and GR cells under different doses of gefitinib treatment 20 3.6 Mitochondria and c-Met localization 21 4. Discussion 22 4.1 Plasma c-Met as a biomarker to predict drug-resistance 23 4.2 c-Met mutations 23 4.3 The role of c-Met in resistance to gefitinib in HCC827 and PC9 24 4.4 The relationship between mitochondria morphological alteration and drug-resistance 25 4.5 c-Met and mitochondria localization pattern 27 5. Conclusion 28 6. Tables 30 7. Figures 34 8. References 48 | |
| dc.language.iso | en | |
| dc.subject | 基因突變檢測 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | c-Met | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 標靶治療 | zh_TW |
| dc.subject | mitochondria | en |
| dc.subject | mutation screening | en |
| dc.subject | gefitinib-resistance | en |
| dc.subject | c-Met | en |
| dc.subject | lung cancer | en |
| dc.title | 探討粒線體之型態在c-Met誘發之抗藥性肺癌細胞株中的變化 | zh_TW |
| dc.title | Mitochondria Morphological Change in c-Met Mediated Drug Resistant Lung Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音,楊雅倩 | |
| dc.subject.keyword | 粒線體,肺癌,c-Met,抗藥性,標靶治療,基因突變檢測, | zh_TW |
| dc.subject.keyword | mitochondria,lung cancer,c-Met,gefitinib-resistance,mutation screening, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201802606 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
