Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宏智
dc.contributor.authorYin-Te Lanen
dc.contributor.author藍尹德zh_TW
dc.date.accessioned2021-06-08T03:59:54Z-
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citation[1]Kimmel, J., Foldable electronic device and a flexible display device, Google Patents, 2010.
[2]Rothkopf, F.R., A.J. Janis, and T. Dabov, Flexible display devices, Google Patents, 2014.
[3]Franklin, J.C., S.A. Myers, B.M. Rappoport, S.B. Lynch, J.P. Ternus, and J. Wodrich, Flexible electronic devices, Google Patents, 2015.
[4]Cho, Y.M., Mobile terminal using flexible display and method of controlling the mobile terminal, Google Patents, 2013.
[5]Cnet. lgs-18-inch-rollable-oled-display-pictures. [cited 2018 15 July]; Available from: https://www.cnet.com/pictures/lgs-18-inch-rollable-oled-display-pictures/2/.
[6]Kang, J. IHS Technology Flexible Display Market Tracker. 2016 [cited 2018 15 July]; Available from: https://technology.ihs.com/api/binary/578789.
[7]Gorkina, A.L., A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova, A. Talyzin, A.S. Anisimov, I.V. Anoshkin, E.I. Kauppinen, O.V. Tolochko, and A.G. Nasibulin, 'Transparent and conductive hybrid graphene/carbon nanotube films,' Carbon, 100, pp. 501-507, 2016.
[8]Ricciardulli, A.G., S. Yang, G.J.A.H. Wetzelaer, X. Feng, and P.W.M. Blom, 'Hybrid Silver Nanowire and Graphene‐Based Solution‐Processed Transparent Electrode for Organic Optoelectronics,' Advanced Functional Materials, 28(14), 2018.
[9]Hu, L., H. Wu, and Y. Cui, 'Metal nanogrids, nanowires, and nanofibers for transparent electrodes,' MRS Bulletin, 36(10), pp. 760-765, 2011.
[10]Lyons, P.E., S. De, J. Elias, M. Schamel, L. Philippe, A.T. Bellew, J.J. Boland, and J.N. Coleman, 'High-Performance Transparent Conductors from Networks of Gold Nanowires,' The Journal of Physical Chemistry Letters, 2(24), pp. 3058-3062, 2011.
[11]Shirakawa, H., E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, 'Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x,' Journal of the Chemical Society, Chemical Communications,(16), pp. 578-580, 1977.
[12]Hecht, D.S., L. Hu, and G. Irvin, 'Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,' Advanced Materials, 23(13), pp. 1482-1513, 2011.
[13]Karzazi, Y., 'Organic light emitting diodes: Devices and applications,' J. Mater. Environ. Sci, 5(1), pp. 1-12, 2014.
[14]Chun‐lin, Z., Z. Yong, W. Fang‐cong, W. Ying, J. Xiao‐yun, and L. Su, 'The effect of low temperature thermal annealing on the properties of organic light‐emitting device,' Microelectronics International, 28(1), pp. 66-70, 2011.
[15]Biswas, P.K., A. De, L.K. Dua, and L. Chkoda, 'Work function of sol–gel indium tin oxide (ITO) films on glass,' Applied Surface Science, 253(4), pp. 1953-1959, 2006.
[16]Park, Y., V. Choong, Y. Gao, B.R. Hsieh, and C.W. Tang, 'Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,' Applied Physics Letters, 68(19), pp. 2699-2701, 1996.
[17]Heraeus. CLEVIOS™ HIL-E 100 data sheet 2016 [cited 2018 15-July]; Available from: https://www.heraeus.com/media/media/group/doc_group/products_1/conductive_polymers_1/h/CLEVIOS_HIL-E_.pdf.
[18]Bryant, D., I. Mabbett, P. Greenwood, T. Watson, M. Wijdekop, and D. Worsley, 'Ultrafast near-infrared curing of PEDOT: PSS,' Organic Electronics, 15(6), pp. 1126-1130, 2014.
[19]Gilissen, K., W. Moons, J. Manca, and W. Deferme. Microwave annealing as fast alternative for hotplate annealing of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate). in 2014 29th International Conference on Microelectronics Proceedings - MIEL 2014. 2014.
[20]Huang, J., P. Miller, J. De Mello, A. De Mello, and D. Bradley, 'Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films,' Synthetic Metals, 139(3), pp. 569-572, 2003.
[21] 尤銓聰, '旋轉塗佈參數對透明導電高分子 PEDOT: PSS 薄膜特性之影響,' 崑山科技大學電機工程研究所學位論文, pp. 1-72, 2008.
[22]Zhou, J., D.H. Anjum, L. Chen, X. Xu, I.A. Ventura, L. Jiang, and G. Lubineau, 'The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses,' Journal of Materials Chemistry C, 2(46), pp. 9903-9910, 2014.
[23]景亚霓, 胡文华, 张平, 魏志芬, 唐正宁, and 钟传杰, '喷墨印刷沉积的 PEDOT/PSS 薄膜导电性能,' 液晶与显示, 25(5), pp. 656, 2010.
[24]Crispin, X., F. Jakobsson, A. Crispin, P. Grim, P. Andersson, A. Volodin, C. Van Haesendonck, M. Van der Auweraer, W.R. Salaneck, and M. Berggren, 'The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)− poly (styrenesulfonate)(PEDOT− PSS) plastic electrodes,' Chemistry of Materials, 18(18), pp. 4354-4360, 2006.
[25]盧宥任, 謝余松, and 張益三, '橢圓偏光術於 ITO 透明導電膜量測應用 (上),' 光連: 光電產業與技術情報,(98), pp. 61-64, 2012.
[26]Feynman, R.P., R.B. Leighton, and M. Sands, The Feynman lectures on physics, vol. 2: Mainly electromagnetism and matter. 1979: Addison-Wesley.
[27]Lee, J.S., S. Chang, S.-M. Koo, and S.Y. Lee, 'High-Performance a-IGZO TFT With $hbox {ZrO} _ {2} $ Gate Dielectric Fabricated at Room Temperature,' IEEE Electron Device Letters, 31(3), pp. 225-227, 2010.
[28]Avis, C. and J. Jang, 'High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method,' Journal of Materials Chemistry, 21(29), pp. 10649-10652, 2011.
[29]林詩萍, 邱傳聖, 蘇健穎, 蕭健男, and 潘漢昌, '不同鍍膜溫度對透明導電鋅鎵氧化物薄膜之光電性質研究,' 真空科技, 19(2), pp. 95-99, 2006.
[30]Smokefoot, 'ConductivePoly.png By Smokefoot [Public domain], from Wikimedia Commons,'
[31]Wikipedia[PublicDomain]. Poly(3,4-ethylenedioxythiophene). [cited 2018 15 July]; Available from: https://en.wikipedia.org/wiki/Poly(3,4-ethylenedioxythiophene).
[32]Laska, J. and J. Widlarz, 'Water soluble polyaniline,' Synthetic Metals, 135-136, pp. 261-262, 2003.
[33]Lang, U., E. Müller, N. Naujoks, and J. Dual, 'Microscopical Investigations of PEDOT:PSS Thin Films,' Advanced Functional Materials, 19(8), pp. 1215-1220, 2009.
[34]Friedel, B., P.E. Keivanidis, T.J.K. Brenner, A. Abrusci, C.R. McNeill, R.H. Friend, and N.C. Greenham, 'Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors,' Macromolecules, 42(17), pp. 6741-6747, 2009.
[35]Greczynski, G., T. Kugler, and W. Salaneck, 'Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,' Thin Solid Films, 354(1-2), pp. 129-135, 1999.
[36]Mäkinen, A., I. Hill, R. Shashidhar, N. Nikolov, and Z. Kafafi, 'Hole injection barriers at polymer anode/small molecule interfaces,' Applied Physics Letters, 79(5), pp. 557-559, 2001.
[37]Sze, P.-W., K.-W. Lee, P.-C. Huang, D.-W. Chou, B.-S. Kao, and C.-J. Huang, 'The Investigation of High Quality PEDOT:PSS Film by Multilayer-Processing and Acid Treatment,' Energies, 10(5), pp. 716, 2017.
[38]Huang, J., P.F. Miller, J.S. Wilson, A.J. de Mello, J.C. de Mello, and D.D.C. Bradley, 'Investigation of the Effects of Doping and Post‐Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4‐ethylenedioxythiophene)/Poly(styrene sulfonate) Films,' Advanced Functional Materials, 15(2), pp. 290-296, 2005.
[39]Chang, S.H., C.-H. Chiang, F.-S. Kao, C.-L. Tien, and C.-G. Wu, 'Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics,' IEEE Photonics Journal, 6(4), pp. 1-7, 2014.
[40]Perloff, D.S., 'Four-point sheet resistance correction factors for thin rectangular samples,' Solid-State Electronics, 20(8), pp. 681-687, 1977.
[41]Smits, F., 'Measurement of sheet resistivities with the four‐point probe,' Bell Labs Technical Journal, 37(3), pp. 711-718, 1958.
[42]KEITHLEY. Series 2400 SourceMeter® SMU Instruments Data Sheet. [cited 2018 31 July]; Available from: https://d3fdwrtpsinh7j.cloudfront.net/Docs/datasheet/2410.pdf.
[43]國立交通大學奈米科技中心. 中心設備介紹: 紫外/可見/紅外光 分光光譜儀 [UV/VIS/NIR Spectrophotometer]. [cited 2018 31 July]; Available from: http://cnst.nctu.edu.tw/facili.php#UVNSPM.
[44]Wikipedia[PublicDomain]. Atomic force microscopy. [cited 2018 14 July]; Available from: https://en.wikipedia.org/wiki/Atomic_force_microscopy.
[45]Marrese, M., V. Guarino, and L. Ambrosio, 'Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering,' Journal of Functional Biomaterials, 8(1), pp. 7, 2017.
[46]國立交通大學奈米科技中心. 中心設備介紹: 原子力顯微鏡 [AFM - Edge]. [cited 2018 31 July]; Available from: http://cnst.nctu.edu.tw/facili.php#AFM-Edge.
[47]國家實驗研究院. 儀科中心奈米標準實驗室通過TAF認證. 2008 [cited 2018 30 July]; Available from: https://www.narlabs.org.tw/xmdoc/cont?xsmsid=0I148622737263495777&sid=0I162502018637267074.
[48]UniversityofOxford. Specifications of the Hitachi S-4300 SEM. [cited 2018 31 July]; Available from: https://www2.physics.ox.ac.uk/enterprise/services-and-specialist-equipment/sem/specifications.
[49]田大昌, 陳俊榮, 謝孟婷, 黃啓貞, 蔡玲娜, 孫亞君, and 林麗娟, '光電子能階分析在奈米有機半導體上之應用,' 工業材料雜誌,(251), pp. 99-106, 2007.
[50]ThermoFisherScientific. Theta Probe Angle-Resolved X-ray Photoelectron Spectrometer (ARXPS) System. [cited 2018 31 July]; Available from: https://www.thermofisher.com/order/catalog/product/IQLAADGAAFFAFLMAMC.
[51]Xu, B., S.-A. Gopalan, A.-I. Gopalan, N. Muthuchamy, K.-P. Lee, J.-S. Lee, Y. Jiang, S.-W. Lee, S.-W. Kim, J.-S. Kim, H.-M. Jeong, J.-B. Kwon, J.-H. Bae, and S.-W. Kang, 'Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells,' Scientific Reports, 7, pp. 45079, 2017.
[52]CasaXPS. Peak Fitting in XPS. 2006 [cited 2018 15 July]; Available from: http://www.casaxps.com/help_manual/manual_updates/peak_fitting_in_xps.pdf.
[53]AccessLaser. L5 Family. [cited 2018 15 July]; Available from: http://www.accesslaser.com/portfolio/l5-family/.
[54]THORLABS. Spec Sheet: S322C Thermal Power Head. [cited 2018 31 July]; Available from: https://www.thorlabs.com/drawings/f23d14a2720501b8-39AA2F95-AA18-36D6-EB2A3D8E3A1773D7/S322C-SpecSheet.pdf.
[55]AliExpress. 2D Scanning Head for Fiber Laser Marking Machine, TSH8618D. [cited 2018 31 July]; Available from: https://www.aliexpress.com/item/2D-Scanning-Head-for-Fiber-Laser-Marking-Machine-TSH8618D/32825143606.html.
[56]Hale, G.M. and M.R. Querry, 'Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,' Applied Optics, 12(3), pp. 555-563, 1973.
[57]Tseng, S.-F., W.-T. Hsiao, K.-C. Huang, and D. Chiang, 'The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates,' Applied Surface Science, 257(21), pp. 8813-8819, 2011.
[58]Takano, T., H. Masunaga, A. Fujiwara, H. Okuzaki, and T. Sasaki, 'PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films,' Macromolecules, 45(9), pp. 3859-3865, 2012.
[59]Xing, Y., M. Qian, G. Wang, G. Zhang, D. Guo, and J. Wu, 'UV irradiation induced conductivity improvement in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film,' Science China Technological Sciences, 57(1), pp. 44-48, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22051-
dc.description.abstract本研究利用波長10600 nm的CO2脈衝雷射源,對PEDOT:PSS (CLEVIOS™ HIL-E 100 from Heraeuse)進行熱處理加工。本研究利用線性四點探針、分光光度法、原子力顯微鏡、掃描式電子顯微鏡、X光電子能譜對雷射熱處理前後的PEDOT:PSS性能進行探究。透過調變雷射參數,本研究成功建立PEDOT:PSS受CO2雷射熱處理之變化模式。過程中成功在181 s內把PEDOT:PSS電導率從2.83E-02 S/cm提升至5.94 E+01 S/cm。此電導率上升可能與SEM觀測到之PEDOT:PSS分子團聚現象以及XPS觀測到之表面PEDOT/PSS訊號強度比值從0.1359上升到0.2499有關。最高電導率加工參數加工相較於原試片,過程中伴隨可見光平均透光率從 89.1219 % 下降到 88.4766 % 以及方均根粗糙度從2.27 nm上升到2.49 nm等少量劣化。而材料表面累積能量過高時,會同時造成透光率以及電導率大幅下降。在加熱板對照組實驗中,同樣在空氣中進行熱處理,加熱板並無法在30 min內將此材料電導率有效提升,證明本研究提出之PEDOT:PSS熱處理方法在小面積並且無加工環境氣體控制設備下有其優勢。
本研究發現CO2脈衝雷射運用於PEDOT:PSS熱處理是十分具有競爭力,可以在相對短的時間內對小面積PEDOT:PSS進行有效熱處理。搭配上選擇性加工的優勢可以將可撓性透明電子元件複雜度以及材料的選用增加更多可能。
zh_TW
dc.description.abstractIn this study, the PEDOT:PSS (CLEVIOS™ HIL-E 100 from Heraeuse) films coated on glass substrate was treated by CO2 pulsed laser in the air. The property of the PEDOT:PSS was investigated by in-line four-point probe array, spectrophotometry, AFM, SEM, and XPS. Through manipulating the fluence and the scan speed of the laser, the change in PEDOT:PSS property induced by CO2 pulsed laser was analyzed. The conductivity of the film was enhanced from 2.83E-02 S/cm to 59.4 S/cm in 181 seconds as a result of the remove of the residual water. Meanwhile, the average transmittance decreased from 89.1219 % to 88.4766 %, and the RMS roughness increased from 2.27 nm to 2.49 nm. The conductivity enhancement might be caused by the reunion between PEDOT:PSS moleculars, and the rise in the surface PEDOT/PSS ratio as investigated by SEM and XPS. However, when the laser power excess the durability of PEDOT:PSS, some significant decrease in conductivity and transmittance was observed. Compared with the hotplate thermal traetment in the air, which can not significantly increase the conductivity of PEDOT:PSS, it is found that CO2 pulsed laser thermal treatment have advantages in PEDOT:PSS thermal treatment in small area without air controled.
In this study, a promising method of heat treatment for PEDOT:PSS is investigated. The conductivity of PEDOT:PSS is enhanced to 59.4 S/cm in air by CO2 Laser, which is much better than hotplate. With the advantage of selective treatment, the heat can be controled for more complicated electrical stucture in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:59:54Z (GMT). No. of bitstreams: 1
ntu-107-R05522707-1.pdf: 27363329 bytes, checksum: 2a42d452f87aae72808b78b647d0c5ef (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 ix
表目錄 xiii
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究方法 5
1.4 論文架構 8
第2章 文獻回顧 9
2.1 PEDOT:PSS與透明導電膜 9
2.1.1 透明導電膜 9
2.1.2 PEDOT:PSS 結構 12
2.1.3 PEDOT:PSS導電原理 14
2.1.4 PEDOT:PSS 成膜結構 14
2.1.5 PEDOT:PSS熱影響團聚現象 16
2.2 PEDOT:PSS 熱處理研究 17
2.2.1 傳統熱處理研究 18
2.2.2 熱輻射線熱處理研究 22
2.3 小結 25
第3章 分析方法 27
3.1 電性分析 - 線性四點探針法 27
3.1.1 理論 27
3.1.2 設備 29
3.1.3 量測與計算 30
3.2 光學分析 – 分光光度法 31
3.2.1 理論 31
3.2.2 設備 33
3.2.3 量測與計算 34
3.3 表面粗糙度分析 – 原子力顯微鏡 35
3.3.1 理論 35
3.3.2 設備 37
3.3.3 量測與計算 38
3.4 表面形貌分析 – 掃描式電子顯微鏡 39
3.4.1 理論 39
3.4.2 設備 39
3.4.3 量測與計算 40
3.5 化學組成分析 – X光電子能譜 41
3.5.1 理論 41
3.5.2 設備 42
3.5.3 量測與計算 43
第4章 CO2雷射熱處理 47
4.1 總流程 47
4.2 設備 49
4.3 試片製備 51
4.4 雷射選擇 54
4.5 雷射加工系統 55
4.6 加工參數設定 56
第5章 結果與討論 61
5.1 加工參數探討實驗 61
5.1.1 導電性能分析 61
5.1.2 光學性能分析 65
5.1.3 表面粗糙度分析 72
5.1.4 表面形貌分析 80
5.1.5 化學組成分析 82
5.1.6 小結 86
5.2 加熱板對照組實驗 90
5.2.1 加熱板熱處理加工 90
5.2.2 加工效率比較 90
5.2.3 小結 91
5.3 選擇性加工實驗 92
5.3.1 說明 92
5.3.2 加工區域設計 92
5.3.3 電阻分析 93
5.3.4 小結 94
5.4 實驗重複性探討 95
5.4.1 參數挑選 95
5.4.2 導電性探討 96
5.4.3 小結 100
第6章 結論與未來展望 101
6.1 結論 101
6.2 未來展望 102
參考資料 103
dc.language.isozh-TW
dc.titleCO2脈衝雷射應用於PEDOT:PSS熱處理製程之研究zh_TW
dc.titleStudy of PEDOT:PSS Thermal Treatment by CO2 Pulsed Laseren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何正義,林傳傑,蕭文澤
dc.subject.keywordPEDOT:PSS,CO2 脈衝雷射,四點探針,分光光度法,原子力顯微鏡,掃描式電子顯微鏡,X 光電子能譜,zh_TW
dc.subject.keywordPEDOT:PSS,CO2 pulsed laser,In-line four-point probe,AFM,SEM,XPS,Pectrophotometry,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201802250
dc.rights.note未授權
dc.date.accepted2018-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
26.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved