請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張俊彥 | |
| dc.contributor.author | Yu-Chen Yeh | en |
| dc.contributor.author | 葉昱辰 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:59:38Z | - |
| dc.date.copyright | 2018-08-13 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | 1. Alexiou, K., Zamenopoulos, T., Johnson, J. H., & Gilbert, S. J. (2009). Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Design Studies, 30(6), 623-647. doi:http://dx.doi.org/10.1016/j.destud.2009.05.002
2. Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29-52. doi:10.1111/nyas.12360 3. Aguirre, G. K., & D’Esposito, M. (1997). Environmental Knowledge Is Subserved by Separable Dorsal/Ventral Neural Areas. The Journal of Neuroscience, 17(7), 2512-2518. doi:10.1523/jneurosci.17-07-02512.1997 4. Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and Executive Network Coupling Supports Creative Idea Production. Scientific Reports, 5, 10964. doi:10.1038/srep10964 5. Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative Cognition and Brain Network Dynamics. Trends in Cognitive Sciences, 20(2), 87-95. doi:https://doi.org/10.1016/j.tics.2015.10.004 6. Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., . . . Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1713532115 7. Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6(1195). doi:10.3389/fpsyg.2015.01195 8. Bowers, K, Regehr, G., Balthazard, C., & Parker, K. (1990). Intuition in the Context of Discovery. Cognitive Psychology, 22, 72-110. http://dx.doi.org/10.1016/0010-0285(90)90004-N 9. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583. doi:10.1093/brain/awl004 10. Dane, E., Baer, M., Pratt, M., & R. Oldham, G. (2011). Rational Versus Intuitive Problem Solving: How Thinking 'Off the Beaten Path' Can Stimulate Creativity (Vol. 5). 11. Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13(4), 746-761. doi:https://doi.org/10.1016/j.concog.2004.07.002 12. Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 1783-1794. doi:http://dx.doi.org/10.1016/j.neuroimage.2011.08.008 13. Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual Differences in Intuitive–Experiential and Analytical–Rational Thinking Styles (Vol. 71). 14. Ganaden, R. E., Mullin, C. R., & Steeves, J. K. E. (2013). Transcranial Magnetic Stimulation to the Transverse Occipital Sulcus Affects Scene but Not Object Processing. Journal of Cognitive Neuroscience, 25(6), 961-968. doi:10.1162/jocn_a_00372 15. Gilbert, S. J., Zamenopoulos, T., Alexiou, K., & Johnson, J. H. (2010). Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: An fMRI study. Brain Research, 1312, 79-88. doi:http://dx.doi.org/10.1016/j.brainres.2009.11.045 16. Goel, V. (2014). Creative brains: designing in the real world†. Frontiers in Human Neuroscience, 8(241). doi:10.3389/fnhum.2014.00241 17. Goldschmidt, G., & Weil, M. (1998). Contents and Structure in Design Reasoning. Design Issues, 14(3), 85-100. doi:10.2307/1511899 18. Goldschmidt, G. (1992). SERIAL SKETCHING: VISUAL PROBLEM SOLVING IN DESIGNING. Cybernetics and Systems, 23(2), 191-219. doi:10.1080/01969729208927457 19. Goldschmidt, G. (1994). On visual design thinking: the vis kids of architecture. Design Studies, 15(2), 158-174. doi:https://doi.org/10.1016/0142-694X(94)90022-1 20. Goldschmidt, G. (2014). Linkography: Unfolding the Design Process: The MIT Press. 21. Groborz, M., & Necka, E. (2003). Creativity and Cognitive Control: Explorations of Generation and Evaluation Skills. Creativity Research Journal, 15(2-3), 183-197. doi:10.1080/10400419.2003.9651411 22. Greenberg, D. L., Rice, H. J., Cooper, J. J., Cabeza, R., Rubin, D. C., & LaBar, K. S. (2005). Co-activation of the amygdala, hippocampus and inferior frontal gyrus during autobiographical memory retrieval. Neuropsychologia, 43(5), 659-674. doi:https://doi.org/10.1016/j.neuropsychologia.2004.09.002 23. Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444-454. 24. Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53(4), 267-293. doi:http://dx.doi.org/10.1037/h0040755 25. Heinonen, J., Numminen, J., Hlushchuk, Y., Antell, H., Taatila, V., & Suomala, J. (2016). Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking. PLoS ONE, 11(9), e0162234. 26. Japee, S., Holiday, K., Satyshur, M. D., Mukai, I., & Ungerleider, L. G. (2015). A role of right middle frontal gyrus in reorienting of attention: a case study. Frontiers in Systems Neuroscience, 9, 23. doi:10.3389/fnsys.2015.00023 27. Johnson, M., & Johnson, M. (2014). Decoding individual natural scene representations during perception and imagery. Frontiers in Human Neuroscience, 8(59). doi:10.3389/fnhum.2014.00059 28. Katsuki, F., & Constantinidis, C. (2012). Early involvement of prefrontal cortex in visual bottom-up attention. Nature Neuroscience, 15, 1160. doi:10.1038/nn.3164 29. Lin, W.-L., & Lien, Y.-W. (2013). The Different Role of Working Memory in Open-Ended Versus Closed-Ended Creative Problem Solving: A Dual-Process Theory Account. Creativity Research Journal, 25(1), 85-96. doi:10.1080/10400419.2013.752249 30. Lindquist, M. A. ( 2008). The Statistical Analysis of fMRI Data. Statistical Science, 23(4), 439-464. 31. Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74-82. doi:https://doi.org/10.1016/j.cortex.2015.03.012 32. Meinel, C., & Leifer, L. (2011). Design Thinking Research. doi:10.1007/978-3-642-13757-0 33. Miller, M. B., Donovan, C.-L., Bennett, C. M., Aminoff, E. M., & Mayer, R. E. (2012). Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals. NeuroImage, 59(1), 83-93. doi:https://doi.org/10.1016/j.neuroimage.2011.05.060 34. Monica J. Garfield, N. J. T., Alan R. Dennis, John W. Satzinger. (2001). Research Report: Modifying Paradigms—Individual Differences, Creativity Techniques, and Exposure to Ideas in Group Idea Generation. Information Systems Research, 12(3), 322-333. 35. Onarheim, B., & Friis-Olivarius, M. (2013). Applying the neuroscience of creativity to creativity training. Frontiers in Human Neuroscience, 7(656). doi:10.3389/fnhum.2013.00656 36. Owen, C. (2007). Design thinking: Notes on its nature and use. Design Research Quarterly, 2, 16–27. 37. Rim Razzouk, V. S. (2012). What Is Design Thinking and Why Is It Important? REVIEW OF EDUCATIONAL RESEARCH, 82(3), 330-348. doi:10.3102/0034654312457429 38. Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C., . . . Reiss, A. L. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5, 10894. doi:10.1038/srep10894 39. Seitamaa-hakkarainen, P., Huotilainen, M., Mäkelä, M., Groth, C., & Hakkarainen, K. (2016). How can neuroscience help understand design and craft activity? The promise of cognitive neuroscience in design studies (Vol. 91). 40. Shah, C., Erhard, K., Ortheil, H.-J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI Study. Human Brain Mapping, 34(5), 1088-1101. doi:10.1002/hbm.21493 41. Sien Hu, J. S. I., Sheng Zhang and Chiang-shan R. Li. (2016). The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response. Neuroscience & Biobehavioral Reviews, 36(50), 12688-12696. doi:DOI: https://doi.org/10.1523/JNEUROSCI.1175-16.2016 42. Smallwood, J. (2013). Distinguishing How From Why the Mind Wanders: A Process-Occurrence Framework for Self-Generated Mental Activity (Vol. 139). 43. Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009). Supramarginal gyrus involvement in visual word recognition. Cortex, 45(9), 1091-1096. doi:https://doi.org/10.1016/j.cortex.2008.12.004 44. Sternberg, R. J. (1994). Thinking styles: Theory and assessment at the interface between intelligence and personality. In R. J. Sternberg and P. Ruzgis (Eds.), Personality and intelligence (pp. 105–127). New York: Cambridge University Press. 45. Szpunar, K. K., Chan, J. C. K., & McDermott, K. B. (2009). Contextual Processing in Episodic Future Thought. Cerebral Cortex, 19(7), 1539-1548. doi:10.1093/cercor/bhn191 46. Taura, T., Yoshimi, T., & Ikai, T. (2002). Study of gazing points in design situation: A proposal and practice of an analytical method based on the explanation of design activities. Design Studies, 23(2), 165-185. doi:http://dx.doi.org/10.1016/S0142-694X(01)00018-7 47. Torralbo, A., Walther, D. B., Chai, B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2013). Good Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad Exemplars but Not Greater BOLD Activity. PLoS ONE, 8(3), e58594. doi:10.1371/journal.pone.0058594 48. Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(34), 10573-10581. doi:10.1523/JNEUROSCI.0559-09.2009 49. Warrington, E. K., & Taylor, A. M. (1973). The Contribution of the Right Parietal Lobe to Object Recognition. Cortex, 9(2), 152-164. doi:https://doi.org/10.1016/S0010-9452(73)80024-3 50. Yi-Luen Do, E., & Gross, M. D. (2001). Thinking with Diagrams in Architectural Design. In A. F. Blackwell (Ed.), Thinking with Diagrams (pp. 135-149). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22046 | - |
| dc.description.abstract | 「設計思考」與「空間解讀」是環境設計重要的過程之一。當設計者在進行「設計思考」時,設計者所使用的腦區為何?其腦神經反應機制是如何運作?本研究以神經科學方式探討景觀設計者設計思考之腦區反應,以期望了解景觀設計者與空間之互動關係。
研究使用功能性磁振造影(functional magnetic resonance imaging, fMRI)工具測量腦區,參與對象為專業景觀設計師,設計者將進行設計思考不同階段(精煉與發散)及設計不同環境(都市與自然)類型之設計。實驗結果發散設計思考與情景記憶及語意辨識之相關腦區於顳中回、後扣帶皮層、楔前葉,空間視覺相關腦區於顳中回、楔狀核、禽距溝腦、頂葉、楔前葉。精煉設計思考與情景記憶相關腦區於雙側後扣帶皮層。發散與精煉設計思考比較,發散設計與注意力相關腦區於額中回、額下回,認知、語意記憶及整合感官訊息相關腦區於顳中回、額上回,語意及圖示辨識相關的腦區於緣上回、枕下回。然而在不同階段設計都市與自然空間之比較中腦區無發現反應。研究結果為設計思考不同階段可能性認知功能做一說明。 | zh_TW |
| dc.description.abstract | “Design thinking” and “space interpretation” are both important procedures during environmental design. What are brain areas activated by the designers during a design thinking? What kind of reactive sequences are formed in brains? This study will investigate brain reactions from landscape designers’ design thinking through fMRI. We hope to understand the interactions between landscape designers and landscape types.
Professional landscape designers will be selected to be subjects, their brain reaction will be collected by fMRI as well as analyzed during processing design works of urban spaces and natural environments. In comparison to different stages of design(divergence and refining). Divergent brain area has responded to the identification of episodic future thinking and semantic(middle temporal gyrus, posterior cingulated and precuneus), and the visual brain(middle temporal gyrus, cuneus, calcarine, parietal lobe sub-gyral and precuneus). Refined brain regions have responded of episodic future thinking. In the comparison between divergence and refining, we saw the reaction of the attention neural network brain regions(middle frontal gyrus and inferior frontal gyrus), and semantic memory(middle temporal gyrus and superior frontal gyrus), and semantic, icon recognition brain area(supramarginal gyrus and inferior occipital gyrus). Environmental design of urban and natural space, we didn’t find any reaction. Finally, the study can explain the difference of cognitive function of design thinking. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:59:38Z (GMT). No. of bitstreams: 1 ntu-107-R04628307-1.pdf: 6516103 bytes, checksum: 06bb4d834ba559c84f5766d6b1f3656d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii 英文摘要 iv 目錄 v 圖目錄 viii 表目錄 ix 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 1 第二章 文獻回顧 2 第一節 設計思考 2 一、 設計思考概念 2 二、 設計思考階段 3 三、 設計思考焦點 4 第二節 設計思考之相關腦神經研究 6 一、 設計思考之相關腦區 6 二、 設計思考之相關腦神經網絡 9 三、 環境情境引起之相關腦區 11 第三節 小結 13 一、 設計思考 13 二、 環境情境 13 第三章 研究方法 14 第一節 研究架構與假設 14 第二節 研究變項 15 一、 設計階段 15 二、 設計環境類型 15 三、 設計思考焦點 15 四、 腦神經反應 17 第三節 研究流程與分析方法 18 一、 實驗流程 18 二、 實驗設計 21 三、 研究對象 23 四、 研究工具 23 第四節 分析方法 25 一、 行為實驗資料分析 25 二、 腦造影實驗資料分析 25 三、 研究假設驗證 28 第四章 研究結果與討論 29 第一節 樣本特性分析 29 第二節 行為實驗分析 29 第三節 腦造影實驗 32 一、 樣本特性分析 32 二、 腦造影實驗資料篩選標準 32 三、 設計思考之腦造影實驗結果 35 四、 實驗結果與討論 43 第五章 結論與建議 48 第一節 結論 48 一、 設計思考與腦神經 48 二、 設計思考腦神經之研究應用 49 第二節 後續研究建議 50 參考文獻 51 附錄 i 附錄一、設計思考焦點問卷 i 附錄二、設計思考實驗題本 iv 附錄三、行為與社會科學研究倫理審查核可證明 xi 附錄四、研究參與者知情同意書 xii 附錄六、MRI核磁共振造影實驗受測者說明及同意書 xviii 附錄七、參考文獻原文摘要 xx | |
| dc.language.iso | zh-TW | |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 設計思考 | zh_TW |
| dc.subject | 發散設計思考 | zh_TW |
| dc.subject | 精煉設計思考 | zh_TW |
| dc.subject | 景觀設計 | zh_TW |
| dc.subject | divergent thinking | en |
| dc.subject | functional magnetic resonance imaging(fMRI) | en |
| dc.subject | landscape design | en |
| dc.subject | refine thinking | en |
| dc.subject | design thinking | en |
| dc.title | 設計階段與設計思考之腦區反應 | zh_TW |
| dc.title | Neural Correlates of Design Thinking and Design Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 何立智 | |
| dc.contributor.oralexamcommittee | 林晏州,黃從仁,歐聖榮 | |
| dc.subject.keyword | 設計思考,發散設計思考,精煉設計思考,景觀設計,功能性磁振造影, | zh_TW |
| dc.subject.keyword | design thinking,divergent thinking,refine thinking,landscape design,functional magnetic resonance imaging(fMRI), | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201802602 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
