請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22043
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛景中 | |
dc.contributor.author | Shu-Han Hung | en |
dc.contributor.author | 洪舒涵 | zh_TW |
dc.date.accessioned | 2021-06-08T03:59:29Z | - |
dc.date.copyright | 2018-08-14 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-10 | |
dc.identifier.citation | 1. Thomson, J. J., Carriers of negative electricity. Les prix Nobel 1906.
2. Griffiths, I. W., JJ Thomson-the centenary of his discovery of the electron and of his invention of mass spectrometry. Rapid communications in mass spectrometry 1997, 11, 2-16. 3. Gross, J. H., Mass spectrometry: a textbook. Springer Science & Business Media 2006. 4. De Hoffmann, E., Mass spectrometry. Kirk‐Othmer Encyclopedia of Chemical Technology 2000. 5. Thomson, J. J., LXXXIII. Rays of positive electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1910, 20, 752-767. 6. Herzog, R. F. K.; Viehböck, F. P., Ion Source for Mass Spectrography. Phys. Rev. 1949, 768, 55L. 7. Honig, R. E., Sputtering of surfaces by positive ion beams of low energy. Journal of Applied Physics 1958, 29, 549-555. 8. Liebl, H. J.; Herzog, R. F., Sputtering ion source for solids. Journal of Applied Physics 1963, 34, 2893-2896. 9. Slodzian, G. In Etude d'une méthode d'analyse locale chimique et isotopique utilisant l'émission ionique secondaire, Annales de Physique 1964, 591-648. 10. Benninghoven, A., The history of static SIMS-a personal perspective. ToF-SIMS: Materials Analysis by Mass Spectrometry. Chichester: IM Publications 2013, 39-66. 11. Alford, T. L.; Feldman, L. C.; Mayer, J. W., Fundamentals of Nanoscale Film Analysis. Fundamentals of nanoscale film analysis 2007. 12. Vickerman, J. C.; Gilmore, I. S., Surface analysis: the principal techniques. John Wiley & Sons 2011. 13. Williams, P.; Evans Jr, C. A., Depth profile detection limit of 3× 1015 atom cm - 3 for As in Si using Cs+ bombardment negative secondary ion mass spectrometry. Applied Physics Letters 1977, 30, 559-561. 14. Magee, C. W.; Harrington, W. L.; Honig, R. E., Secondary ion quadrupole mass spectrometer for depth profiling-design and performance evaluation. Review of Scientific Instruments 1978, 49, 477-485. 15. Ber, B. Y.; Kudriavtsev, Y. A.; Merkulov, A.; Novikov, S.; Lacklison, D.; Orton, J.; Cheng, T.; Foxon, C., Secondary ion mass spectroscopy investigations of magnesium and carbon doped gallium nitride films grown by molecular beam epitaxy. Semiconductor science and technology 1998, 13, 71. 16. Horita, T.; Yamaji, K.; Ishikawa, M.; Sakai, N.; Yokokawa, H.; Kawada, T.; Kato, T., Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3-x/Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry. Journal of the Electrochemical Society 1998, 145, 3196-3202. 17. Creighton, J.; White, J., SIMS and TDS study of the reaction of water and oxygen on Pt (111). Surface Science Letters 1982, 122 , L648-L652. 18. Benninghoven, A., Developments in secondary ion mass spectroscopy and applications to surface studies. Surface Science 1975, 53, 596-625. 19. Brunelle, A.; Touboul, D.; Laprévote, O., Biological tissue imaging with time‐of‐flight secondary ion mass spectrometry and cluster ion sources. Journal of Mass Spectrometry 2005, 40, 985-999. 20. Chang, C.-J.; Chang, H.-Y.; You, Y.-W.; Liao, H.-Y.; Kuo, Y.-T.; Kao, W.-L.; Yen, G.-J.; Tsai, M.-H.; Shyue, J.-J., Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60+ - Ar+ co-sputtering. Analytica chimica acta 2012, 718, 64-69. 21. Fisher, G. L.; Belu, A. M.; Mahoney, C. M.; Wormuth, K.; Sanada, N., Three-dimensional time-of-flight secondary ion mass spectrometry imaging of a pharmaceutical in a coronary stent coating as a function of elution time. Analytical chemistry 2009, 81, 9930-9940. 22. Mahoney, C. M., Cluster secondary ion mass spectrometry of polymers and related materials. Mass spectrometry reviews 2010, 29, 247-293. 23. Gillen, G.; Simons, D. S.; Williams, P., Molecular ion imaging and dynamic secondary-ion mass spectrometry of organic compounds. Analytical chemistry 1990, 62, 2122-2130. 24. Cheng, J.; Wucher, A.; Winograd, N., Molecular depth profiling with cluster ion beams. The Journal of Physical Chemistry B 2006, 110, 8329-8336. 25. Wucher, A., A simple erosion dynamics model of molecular sputter depth profiling. Surface and Interface Analysis 2008, 40, 1545-1551. 26. ASTM E1438-11, Standard Guide for Measuring Widths of Interfaces in Sputter Depth Profiling Using SIMS. 27. Rol, P.; Fluit, J.; Kistemaker, J., Theoretical aspects of cathode sputtering in the energy range of 5-25 keV. Physica 1960, 26, 1009-1011. 28. Rosenberg, D.; Wehner, G., Sputtering Yields for Low Energy He+-, Kr+‐, and Xe+‐Ion Bombardment. Journal of Applied Physics 1962, 33, 1842-1845. 29. Biersack, J., Computer simulations of sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1987, 27, 21-36. 30. Vickerman, J. C.; Briggs, D., Tof-SIMS: materials analysis by mass spectrometry. im publications 2013. 31. Baker, M.; Gilmore, R.; Lenardi, C.; Gissler, W., XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Applied Surface Science 1999, 150, 255-262. 32. Hofmann, S., Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure. Surface and interface analysis 1994, 21, 673-678. 33. Grønlund, F.; Moore, W. J., Sputtering of silver by light ions with energies from 2 to 12 keV. The Journal of chemical physics 1960, 32, 1540-1545. 34. Andersen, H.; Bay, H., Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics 1974, 45, 953-954. 35. Johar, S.; Thompson, D., Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films. Surface Science 1979, 90, 319-330. 36. Wong, S.; Stoll, R.; Röllgen, F., Ionization of organic molecules by fast molecular ion bombardment. Zeitschrift für Naturforschung A 1982, 37, 718-719. 37. Kollmer, F., Cluster primary ion bombardment of organic materials. Applied Surface Science 2004, 231, 153-158. 38. Shannon Cornett, D.; Lee, T. D.; Mahoney, J. F.; Todd, P., Matrix‐free desorption of biomolecules using massive cluster impact. Rapid Communications in Mass Spectrometry 1994, 8, 996-1000. 39. Gillen, G.; Roberson, S., Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid communications in mass spectrometry 1998, 12, 1303-1312. 40. Chu, Y.-H.; Liao, H.-Y.; Lin, K.-Y.; Chang, H.-Y.; Kao, W.-L.; Kuo, D.-Y.; You, Y.-W.; Chu, K.-J.; Wu, C.-Y.; Shyue, J.-J., Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2+ cosputtering. Analyst 2016, 141, 2523-2533. 41. Matsuo, J.; Okubo, C.; Seki, T.; Aoki, T.; Toyoda, N.; Yamada, I., A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2004, 219, 463-467. 42. Garrison, B. J.; Postawa, Z., Computational view of surface based organic mass spectrometry. Mass spectrometry reviews 2008, 27, 289-315. 43. Yamada, I., Historical milestones and future prospects of cluster ion beam technology. Applied Surface Science 2014, 310, 77-88. 44. Laval, G. P. D. Steam Turbine. U.S. Patent 522,066, 1894. 45. Kistiakowsky, G. B.; Slichter, W. P., A High Intensity Source for the Molecular Beam. Part II. Experimental. Review of Scientific Instruments 1951, 22, 333-337. 46. E.W.Becker; K.Bier; W.Henkes, Strahlen aus kondensierten Atomen und Molekeln. Zeitschrift für Physik 1956, Bd.146, S.333-338. 47. Takagi, T.; Yamada, I.; Yanagawa, K.; Kunori, M.; Kobiyama, S., Vaporized Metal Cluster Ion-Source for Ion Plating. Jpn J Appl Phys 1974, 427-430. 48. Brown, W. L.; Jarrold, M. F.; Mceachern, R. L.; Sosnowski, M.; Takaoka, G.; Usui, H.; Yamada, I., Ion Cluster Beam Deposition of Thin-Films. Nucl Instrum Meth B 1991, 59, 182-189. 49. Yamada, I. In 20 Years History of Fundamental Research on Gas Cluster Ion Beams, and Current Status of the Applications to Industry, AIP Conference Proceedings, 2006, 147-154. 50. Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A., Materials processing by gas cluster ion beams. Materials Science and Engineering: R: Reports 2001, 34, 231-295. 51. Miyayama, T.; Sanada, N.; Bryan, S. R.; Hammond, J. S.; Suzuki, M., Removal of Ar+ beam‐induced damaged layers from polyimide surfaces with argon gas cluster ion beams. Surface and Interface Analysis 2010, 42, 1453-1457. 52. Rabbani, S.; Barber, A. M.; Fletcher, J. S.; Lockyer, N. P.; Vickerman, J. C., TOF-SIMS with argon gas cluster ion beams: a comparison with C60+. Analytical chemistry 2011, 83, 3793-3800. 53. Yamada, I.; Matsuo, J.; Toyoda, N.; Aoki, T.; Jones, E.; Insepov, Z., Non-linear processes in the gas cluster ion beam modification of solid surfaces. Materials Science and Engineering: A 1998, 253, 249-257. 54. Yamada, I.; Matsuo, J.; Insepov, Z.; Takeuchi, D.; Akizuki, M.; Toyoda, N., Surface processing by gas cluster ion beams at the atomic (molecular) level. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1996, 14, 781-785. 55. Allen, L.; Fenner, D.; DiFilippo, V.; Santeufemio, C.; Degenkolb, E.; Brooks, W.; Mack, M.; Hautala, J., Substrate smoothing using gas cluster ion beam processing. Journal of electronic materials 2001, 30, 829-833. 56. Rading, D.; Moellers, R.; Cramer, H. G.; Niehuis, E., Dual beam depth profiling of polymer materials: comparison of C60 and Ar cluster ion beams for sputtering. Surface and Interface Analysis 2013, 45, 171-174. 57. Bailey, J.; Havelund, R.; Shard, A. G.; Gilmore, I. S.; Alexander, M. R.; Sharp, J. S.; Scurr, D. J., 3d tof-sims imaging of polymer multilayer films using argon cluster sputter depth profiling. ACS applied materials & interfaces 2015, 7, 2654-2659. 58. Nakayama, Y.; Houzumi, S.; Toyoda, N.; Mochji, K.; Mitamura, T.; Yamada, I., Irradiation of silicon surface by Ar cluster ion beam: Cluster size effects. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005, 241, 618-621. 59. Cristaudo, V.; Poleunis, C.; Czerwinski, B.; Delcorte, A., Ar cluster sputtering of polymers: effects of cluster size and molecular weights. Surface and Interface Analysis 2014, 46, 79-82. 60. Seah, M., Universal equation for argon gas cluster sputtering yields. The Journal of Physical Chemistry C 2013, 117, 12622-12632. 61. Shen, K.; Wucher, A.; Winograd, N., Molecular depth profiling with argon gas cluster ion beams. The Journal of Physical Chemistry C 2015, 119, 15316-15324. 62. Seah, M. P.; Havelund, R.; Gilmore, I. S., Systematic temperature effects in the argon cluster ion sputter depth profiling of organic materials using secondary ion mass spectrometry. Journal of The American Society for Mass Spectrometry 2016, 27, 1411-1418. 63. Nelson, R. S., An investigation of thermal spikes by studying the high energy sputtering of metals at elevated temperatures. Philosophical Magazine 1965, 11, 291-302. 64. Carlston, C.; Magnuson, G. D.; Comeaux, A.; Mahadevan, P., Effect of elevated temperatures on sputtering yields. Physical Review 1965, 138, A759. 65. Besocke, K.; Berger, S.; Hofer, W. O.; Littmark, U., A search for a thermal spike effect in sputtering. I. Temperature dependence of the yield at low-keV, heavy-ion bombardment. Radiation effects 1982, 66, 35-41. 66. Mahoney, C. M.; Fahey, A. J.; Gillen, G., Temperature-controlled depth profiling of poly (methyl methacrylate) using cluster secondary ion mass spectrometry. 1. Investigation of depth profile characteristics. Analytical Chemistry 2007, 79, 828-836. 67. Mahoney, C. M.; Fahey, A. J.; Gillen, G.; Xu, C.; Batteas, J. D., Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS). Applied surface science 2006, 252, 6502-6505. 68. Fujiwara, H., Spectroscopic ellipsometry: principles and applications. John Wiley & Sons 2007. 69. Aspnes, D.; Studna, A., High precision scanning ellipsometer. Applied Optics 1975, 14, 220-228. 70. Sillon, N.; Baptist, R., Micromachined mass spectrometer. Sensors and Actuators B: Chemical 2002, 83, 129-137. 71. Nicklaus, M.; Hasselbach, F., Wien filter: A wave-packet-shifting device for restoring longitudinal coherence in charged-matter-wave interferometers. Physical Review A 1993, 48, 152. 72. Advantages of the TRIFT Analyzer for Imaging and Spectroscopy in the PHI nanoTOF. 73. Parry, S.; Winograd, N., High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Analytical chemistry 2005, 77, 7950-7957. 74. Simperler, A.; Kornherr, A.; Chopra, R.; Bonnet, P. A.; Jones, W.; Motherwell, W. S.; Zifferer, G., Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. The Journal of Physical Chemistry B 2006, 110, 19678-19684. 75. 王成功, 氬簇離子團 (Arn+) 能量密度與 O2+ 共濺射對軟材料二次離子質譜縱深分析之影響. 臺灣大學材料科學與工程學研究所學位論文 2017, 1-75. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22043 | - |
dc.description.abstract | 由於具備表面及縱深分析的能力,二次離子質譜儀在分析領域已經被使用數十年,然而,單原子離子濺射源容易導致大分子碎裂成小的分子破片以及化學結構上的改變,因此較難建構生物性材料和高分子等軟材料的縱深分析。近年來,氣體團簇離子束 (Gas Cluster Ion Beam, GCIB) 由於其入射至樣品後能量的沉積集中在更表層,在濺射過程中能保持樣品中分子結構的完整性,因此成為分析軟材料的入射離子源之一;此外,GCIB可藉由調整其能量密度 (Energy per atom, E/n) 取得更適合做為濺射離子源的實驗參數。在本實驗中,使用飛行時間二次離子質譜儀 (Time of Flight Secondary Ion Mass Spectroscopy, ToF-SIMS) 作為分析儀器,以脈衝C60+作為分析離子源,並以10-20 keV 的Ar1000-4000+ (E/n = 2.5-20 eV/atom) 作為濺射離子源,以交錯濺射的方式產生縱深分佈,建構矽基材上海藻糖薄膜的縱深分析結果。而實驗結果顯示當入射離子能量密度 (E/n ≥ 10 eV/atom) 越高,入射離子誘發的損傷程度越高,導致樣品內的分子產生化學結構的轉變,所得出的二次離子訊號強度越低;而當入射離子能量密度 (E/n ≤ 4 eV/atom) 越低時,其濺射率越低,因此無法有效的移除入射離子源誘發的損傷,二次離子訊號強度也較低;但在入射離子能量密度 (E/n = 4-10 eV/atom) 適中的情況下,所誘發的損傷和濺射速率較能達到良好的平衡,因此保留了較高的二次離子訊號強度,總結來說,適中的入射離子能量密度可以使得縱深分析結果更加真實。而除了能量密度以外,樣品溫度也是影響縱深分析的因素之一,在較高的溫度下,分子的流動性提高,使得濺射率上升,入射離子誘發的損傷更容易被移除,但同時樣品內的自由基活性提高,使得交聯反應或是分子結構變化更容易發生;相反的,在較低的溫度下,自由基的活性被限制,抑制了化學結構的改變,但同時分子流動性降低使得濺射率降低,入射離子所誘發的損傷較難被移除。而本實驗分別在-90 ℃、25 ℃以及90 ℃下,使用不同能量密度的Arn+對海藻糖薄膜進行縱深分析,結果顯示在高溫時,二次離子的訊號強度因為濺射率的提高而有所提升,但在低溫時,其縱深分析結果並沒有明顯的優於常溫下的結果,顯示在此系統中濺射率提高的影響較損傷降低的影響來的重要。 | zh_TW |
dc.description.abstract | Secondary Ion Mass Spectroscopy (SIMS), with its ability to analyze chemical compositions at near surface and along the depth, has been used for decades. However, depth profiles of bio-materials and soft materials are more difficult to obtain due to the fragmentation and transformation of molecules induced by atomic ion sputtering gun. Nevertheless, with more surface-localized energy deposition, gas cluster ion beam (GCIB) could preserve molecular structures during sputtering hence is a promising candidate for analyzing soft materials. Furthermore, by adjusting the energy per atom (E/n) of GCIB, experimental parameters can be optimized. In this work, as modeling system, trehalose thin films on silicon were profiled with 10-20 keV Ar1000-4000+ (E/n = 2.5-20 eV/atom). The spectrum during interlaced sputtering was obtained with Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) with pulsed C60+ as primary ion beam to construct the depth profile. It was found that with higher energy density (E/n ≥ 10 eV/atom), lower intensity of molecular ions was obtained due to fragmentation of the molecules and higher degree of damage. Furthermore, with lower energy density (E/n ≤ 4 eV/atom), suppressed intensity is also observed due to the lower sputtering rate that cannot remove damage sufficiently. Nevertheless, with medium energy density (E/n = 4-10 eV/atom), the introduction and removal of structural damage is balanced hence higher molecular ion intensity is retained. As a result, moderate E/n yield more realistic results. In addition to the E/n, temperature is another factor that influences depth profiles. At higher temperature, molecules become more mobile hence higher sputtering rate is expected and could mask the damage. However, radicals are also more mobile and induce more significant cross-linking that suppress the ion intensity. For lower temperature, radicals would be immobilized but the sputtering rate would also decrease hence it is more difficult to remove damage. In this work, depth profiles of trehalose thin films are conducted under -90 ℃, 25 ℃ and 90 ℃ using Arn+ with different energy density as sputter ions. The results show that enhanced intensity is observed at high temperature due to the enhanced sputter yield. However, no obvious differences are found in depth profiles conducted at low temperature as compared with those at room temperature. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:59:29Z (GMT). No. of bitstreams: 1 ntu-107-R05527011-1.pdf: 8021190 bytes, checksum: d9e0a2532d77b8d3d19eaad8120b8523 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 目錄 iii 圖目錄 vi 表目錄 xiii 第1章 緒論 1 第2章 文獻回顧 3 2.1 質譜法 (Mass Spectrometry, MS) 3 2.1.1 質譜法之歷史沿革 3 2.1.2 質譜法之運作原理 4 2.2 二次離子質譜法 (Secondary Ion Mass Spectroscopy, SIMS) 6 2.2.1 二次離子質譜法之歷史沿革 6 2.2.2 二次離子質譜法之基本原理 8 2.2.3 動態及靜態二次離子質譜儀之比較 10 2.2.4 二次離子質譜儀之應用 12 2.3 縱深分析 (Depth Profile) 15 2.3.1 縱深分析之運作原理 15 2.3.2 縱深分析常見的問題 22 2.4 單原子離子源與簇離子源應用於二次離子質譜儀之比較 24 2.4.1 簇離子源應用於二次離子質譜儀之歷史沿革 24 2.4.2 簇離子源之濺射機制 27 2.5 氣體簇離子源 (Gas Cluster Ion Beam, GCIB) 30 2.5.1 氣體簇離子源之歷史沿革 30 2.5.2 氣體團簇離子源之產生 32 2.5.3 氣體團簇離子源之特性及優點 33 2.5.4 氣體團簇離子源之應用 37 2.5.5 氣體團簇離子源之能量密度 (Energy per Atom, E/n) 40 2.6 樣品溫度對縱深分析之影響 43 2.6.1 樣品溫度對濺射率之影響 43 2.6.2 樣品溫度對損傷累積之影響 46 2.6.3 樣品溫度對界面寬度之影響 47 2.7 實驗目的 49 第3章 實驗與儀器介紹 50 3.1 實驗材料 50 3.2 實驗儀器 50 3.2.1 橢圓偏振儀 (Ellipsometry) 50 3.2.2 飛行式二次離子質譜儀 (Time-of-Flight Secondary Ion Mass Spectroscopy, ToF-SIMS) 52 3.3 實驗步驟 57 3.3.1 試片製備 57 3.3.2 ToF-SIMS分析條件 57 第4章 結果與討論 58 4.1 特徵破片的選用 58 4.2 常溫 (25 ℃) 下縱深分析結果 61 4.2.1 負離子縱深分析與正離子縱深分析結果之比較 61 4.2.2 濺射離子源Arn+能量密度 (E/n) 對縱深分析之影響 62 4.2.3 濺射離子源Arn+能量密度 (E/n) 對界面寬度之影響 67 4.3 高溫 (90℃) 與常溫下 (25℃) 縱深分析結果比較 68 4.3.1 濺射離子源Arn+能量密度 (E/n) 對縱深分析之影響 68 4.3.2 濺射離子源Arn+能量密度 (E/n) 對界面寬度之影響 72 4.4 低溫 (-90 ℃) 與常溫下 (25 ℃) 縱深分析結果比較 73 4.4.1 濺射離子源Arn+能量密度 (E/n) 對縱深分析之影響 73 4.4.2 濺射離子源Arn+能量密度 (E/n) 對界面寬度之影響 77 4.5 入射離子能量密度與溫度對縱深分析之綜合影響 78 第5章 結論 82 第6章 參考資料 83 | |
dc.language.iso | zh-TW | |
dc.title | 溫度與氬簇離子團 (Arn+) 能量密度對有機薄膜二次離子質譜縱深分析之影響 | zh_TW |
dc.title | Effect of Temperature and Energy per Atom (E/n) in Ar Gas Cluster Ion Beam (GCIB, Arn+) on Depth Profile of Organic Thin Film by Secondary Ion Mass Spectroscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王榮輝,虞邦英 | |
dc.subject.keyword | 飛行式二次離子質譜儀,縱深分析,Arn+簇離子團,能量密度,溫度效應,海藻糖薄膜, | zh_TW |
dc.subject.keyword | ToF-SIMS,depth profile,GCIB,energy per atom (E/n),temperature effect,trehalose thin film, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU201802967 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 7.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。