Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文方(Wen-Fang Wu)
dc.contributor.authorChien-Chun Chenen
dc.contributor.author陳建君zh_TW
dc.date.accessioned2021-06-08T03:59:00Z-
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation[1]Y. Shaoyong, A. Bryant, P. Mawby, X. Dawei, R. Li and P. Tavner, “Anindustry-based survey of reliability in power electronic converters,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1441-1451, May/June 2011.
[2]Z. Wang, W. Qiao, B. Tian and L. Qu, “An effective heat propagation path-based online adaptive thermal model for IGBT modules,” 2014 IEEE Applied Power Electronics Conference and Exposition, pp. 513-518, Fort Worth, TX, USA, Mar. 2014.
[3]C. Durand, M. Llingler and D. Coutellier, “Power cycling reliability of power module: a survey,” IEEE Transactions on Device and Materials Reliability, vol. 16, no. 1, pp. 80-97, Mar. 2016.
[4]H. Wang, M. Liserre and F. Blaabjerg, “Toward reliable power electronics: challenges, design tools, and opportunities,” IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 17-26, 2013.
[5]R. Darveaux, I. Turlik, L. T. Hwang and A. Reisman, “Thermal stress analysis of a multichip package design,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 12, no. 4, pp. 663-672, Dec. 1989.
[6]E. Herr, T. Frey, R. Schlegel, A. Stuck and R. Zehringer, “Substrate-to-base solder joint reliability in high power IGBT modules,” Microelectronics Reliability, vol. 37, no. 10/11, pp. 1719-1722, Oct./Nov. 1997.
[7]A. Morozumi, K. Yamada, T. Miyasaka, S. Sumi and Y. Seki, “Reliability of power cycling for IGBT power semiconductor modules,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 665-671, May/June 2003.
[8]M. Bouarroudj, Z. Khatir, J. P. Ousten, L. Dupont, S. Lefebvre and F. Badel, “Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules,” 2007 European Conference on Power Electronics and Applications, pp.1-10, Aalborg, Denmark, Sep. 2007.
[9]M. Bouarroudj, Z. Khatir, J. P. Ousten, L. Dupont, F. Badel and S. Lefebvre, “Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions,” Microelectronics Reliability, vol. 47, no. 9/11, pp. 1719-1724, Sep./Nov. 2007.
[10]M. Bouarroudj, Z. Khatir, J. P. Ousten and S. Lefebvre, “Temperature-level effect on solder lifetime during thermal cycling of power modules,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 471-477, Sep. 2008.
[11]K. Guth and P. Mahnke, “Improving the thermal reliability of large area solder joints in IGBT power modules,” 2007 European Conference on Power Electronics and Applications, pp.1-10, Aalborg, Denmark, Sep. 2007.
[12]T. Lhommeau, X. Perpiñà, C. Martin, R. Meuret, M. M. Guyennet and M. Karama, “Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications,” Microelectronics Reliability, vol. 47, no. 9/11, pp. 1779-1793, Sep./Nov. 2007.
13]B. Ji, X. Song, E. Sciberras, W. Cao, Y. Hu and V. Pickert, “Multiobjective design optimization of IGBT power modules considering power cycling and thermal cycling,” IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2493-2504, May 2015.
[14]C. Liu, F. Brem, G. Riedel, E. Eichelberger and N. Hofmann, “The influence of thermal cycling methods on the interconnection reliability evaluation within IGBT modules,” 2012 4th Electronic System-Integration Technology Conference, pp.1-5, Amsterdam, Netherlands, Sep. 2012.
[15]J. W. Evans, J. Y. Evans, R. Ghaffarian, A. Mawer, K. T. Lee and C. H. Shin, “Simulation of fatigue distributions for ball grid arrays by the Monte Carlo method,” Microelectronics Reliability, vol. 40, no. 7, pp. 1147-1155, July 2000.
[16]张雪垠,基于FEM的功率IGBT模块功率循环可靠性研究,上海交通大学材料工程研究所硕士学位论文,2014。
[17]U. M. Choi, F. Blaabjerg and K. B. Lee, “Study and handling methods of power IGBT module failures in power electronic converter systems,” IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2517-2533, May 2015.
[18]B. Ji, X. Song, W. Cao, V. Pickert, Y. Hu, J. W. Mackersie and G. Pierce, “In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1535-1543, Mar. 2015.
[19]邱柏倫,以加速壽命模型評估晶圓級晶片尺寸封裝體在熱循環下之疲勞壽命,國立台灣大學機械工程研究所碩士論文,2013。
[20]陳致翔,揚聲器平面彈波之疲勞壽命評估,國立交通大學機械工程研究所碩士論文,2009。
[21]W. W. Lee, L. T. Nguyen and G. S. Selvaduray, “Solder joint fatigue models: review and applicability to chip scale packages,” Microelectronics Reliability, vol. 40, no. 2, pp. 231-244, Feb. 2000.
[22]C. Barbagallo, G. L. Malgioglio, G. Petrone and G. Cammarata, “Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module,” Journal of Physics: Conference Series, vol. 841, no. 1, p. 012014, 2017.
[23]I. W. Suh, H. S. Jung, Y. H. Lee and S. H. Choa, “Numerical prediction of solder fatigue life in a high power IGBT module using ribbon bonding,” Journal of Power Electronics, vol. 16, no. 5, pp. 1843-1850, Sep. 2016.
[24]JEDEC Solid State Technology Association, JESD22-A104D: Temperature Cycling, 2009.
[25]G. Z. Wang, Z. N. Cheng, K. Becker and J. Wilde, “Applying Anand model to represent the viscoplastic deformation behavior of solder alloys,” Journal of Electronic Packaging, vol. 123, no. 3, pp. 247-253, 2001.
[26]C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill Education, 2004.
[27]潘南飛,工程統計,高立圖書,2016。
[28]R. A. Hussein, “Fitting a Two parameters of Weibull distribution using goodness of fit tests,” Al-Mustansiriyah Journal of Science, vol. 23, no. 6, pp. 137-148, 2012.
[29]R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 3^rd Edition, Wiley, 2016.
[30]王成驊,路燈用高功率發光二極體組件於臺灣熱環境下之壽命分布與可靠度分析,國立台灣大學機械工程研究所碩士論文,2017。
[31]陳新郁、林政仁,有限元素-理論與應用ANSYS,高立圖書,新北市,2003。
[32]陳信吉,ANSYS入門,全華圖書,新北市,2007。
[33]H. Lu and C. Bailey, “2D finite element analysis of IGBT solder joint,” 2015 16th International Conference on Electronic Packaging Technology (ICEPT), pp.1247-1251, Changsha, China, Aug. 2015.
[34]H. Lu and C. Bailey, “Approximate methods for IGBT solder joint stress and fatigue prediction,” 2016 6th Electronic System-Integration Technology Conference (ESTC), pp.1-6, Grenoble, France, Dec. 2016.
[35]林良諺,Sn-0.7Cu-xZn無鉛銲錫合金之界面反應及銲點強度研究,國立交通大學機械工程研究所碩士論文,2008。
[36]胡家杰,韌性斜撐之結構消能減震應用,國立交通大學土木工程研究所碩士論文,2008。
[37]賴世霖,高功率發光二極體固晶層受熱循環之疲勞壽命與可靠度評估,國立台灣大學機械工程研究所碩士論文,2013。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22034-
dc.description.abstract近年來由於新能源車以及風力發電等產業日益興盛,為了提供更高的功率密度及較大的電流,致使絕緣柵雙極電晶體(Insulated Gate Bipolar Transistor, IGBT)在這些領域成為不可或缺之功率半導體元件,也使IGBT模組可靠度成為炙手可熱的研究議題。IGBT模組在其生命週期中,模組內之焊接層(Solder)元件會遭受往復熱疲勞循環,導致模組失效,因此聯合電子裝置工程委員會(Joint Electron Device Engineering Council, JEDEC)固態技術協會(JEDEC Solid State Technology Association)特別制定熱循環測試標準,以確保IGBT模組的可靠度。本研究前半段以有限元素法模擬一IGBT模組焊接層,包括晶片焊接層(Chip Solder)及基板焊接層(Baseplate Solder)受到JEDEC所規範往復熱循環負載之力學行為,而後透過Coffin-Manson疲勞壽命預測模型來估算該IGBT模組之疲勞壽命,並且找出關鍵失效之焊接層。值得一提的是,以往經由有限元素模擬IGBT模組封裝體受熱循環所分析出之壽命往往為一定值,此情況無法反應實際應用或實驗測試一批同類封裝體所得壽命具有的離散特性,亦無法進一步評估其壽命分布、失效機率、失效率等可靠度指標。為此,本研究後半段利用蒙地卡羅法將基板焊接層幾何尺寸及機械性質不確定性納入有限元素模擬中,並透過疲勞壽命預測模型得到離散之疲勞壽命,接著經由統計檢定獲得相關之可靠度指標。本研究結果發現,所分析探討之IGBT模組的基板焊接層為該模組之關鍵失效元件;而在考量前述提及之不確定性後,該IGBT模組在JEDEC所規範之熱循環環境下,疲勞壽命介於70.98至90.79個熱循環次數;經由統計檢定,本研究發現以三參數韋伯分布描述所得壽命分布最合適,其最小壽命為67.76,尺度參數為13.19,形狀參數則為2.89,以上反映參數不確定性對IGBT模組疲勞壽命之離散性與可靠度確有一定程度的影響。zh_TW
dc.description.abstractIn recent years, new-energy vehicles and wind power industry have developed rapidly. To provide high power-density and current for those applications, the reliability of insulated gate bipolar transistor (IGBT) modules have also become an important issue. In fact, when IGBT modules are in use, their solder layers including chip solder and baseplate solder are frequently damaged by thermal fatigue and eventually result in failures of modules. The JEDEC Solid State Technology Association has therefore issued standard thermal-cycling test to guarantee the reliability of IGBT modules. This study uses finite element method to simulate the mechanics behavior of a certain type of IGBT module under JEDEC-specified thermal-cyclic load. Special attention is paid to solder layer of the IGBT module. After plastic strain range of the chip solder and baseplate solder are found, Coffin-Manson model is employed for predicting the thermal fatigue life of the IGBT module. It is worth mentioning that most studies of this kind are limited to finding a fixed value of life for a certain type of IGBT module, which may not reflect the fact that, when being tested or in real use, the fatigue lives of IGBT modules have certain degrees of discrepancy. No further reliability information such as life distribution, failure probability and failure rate can be obtained either. To overcome the shortcoming, this study incorporates uncertainties of geometric dimensions and material properties into the aforementioned FEM simulation by Monte-Carlo method, which results in fatigue life distribution for the IGBT module. Statistical tests are then carried out, and the reliability information such as mean time to failure (MTTF), failure probability and failure rate function is obtained. The results show that baseplate solder is the key failure component of the IGBT module and, after considering the uncertainties mentioned above, the fatigue life of the studied IGBT modules under JEDEC-specified thermal cyclic load are between 70.98 and 90.79 cycles. Through statistical tests, it is found that 3-parameter Weibull distribution is suitable to describe the life distribution. For the studied IGBT modules, its minimum life is 67.76, scale parameter is 13.19 and the shape parameter is 2.89. The above result reflects that parameter uncertainty has a certain degree of influence on the life dispersion and reliability of the IGBT module.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:59:00Z (GMT). No. of bitstreams: 1
ntu-107-R05522525-1.pdf: 2155558 bytes, checksum: 7861fc19f2fc2933dd63b28e546275b1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XI
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 4
1-4 研究方法與流程 4
1-5 論文架構 5
第二章 研究對象與基本觀念概述 7
2-1 研究對象 7
2-1-1 IGBT模組簡介 7
2-1-2 IGBT模組失效模式 8
2-2 熱疲勞機制 8
2-2-1 疲勞壽命預測模型 9
2-3 JEDEC熱循環標準規範 10
2-4 Anand力學模型 11
2-5 可靠度基本理論 12
2-5-1 可靠度定義 13
2-5-2 浴缸曲線 (Bathtub Curve) 15
2-5-3 連續機率分布模型 15
2-6 機率圖紙法與統計檢定 19
2-6-1 機率圖紙法 19
2-6-2 統計檢定 20
2-7 蒙地卡羅模擬法 21
第三章 有限元素模型建立 33
3-1 有限元素法 33
3-1-1 有限元素分析基本原理 33
3-1-2 有限元素法基本步驟 34
3-2 有限元素分析軟體介紹 34
3-3 有限元素模擬 35
3-3-1 有限元素模擬基本假設 35
3-3-2 IGBT模組結構尺寸與材料參數 36
3-3-3 有限元素模型建構 37
3-3-4 接觸條件 38
3-3-5 邊界條件 38
3-3-6 負載條件 38
第四章 有限元素分析結果及疲勞壽命預測 46
4-1 有限元素分析結果 46
4-2 未加入參數不確定性疲勞壽命分析 47
4-3 參數不確定下之疲勞壽命分析 47
4-4 參數不確定性對可靠度及失效率之影響 48
第五章 結論 64
參考文獻 66
dc.language.isozh-TW
dc.subject可靠度zh_TW
dc.subject絕緣柵雙極電晶體zh_TW
dc.subject焊接層zh_TW
dc.subject參數不確定性zh_TW
dc.subject熱疲勞壽命分布zh_TW
dc.subjectParameter uncertaintyen
dc.subjectReliabilityen
dc.subjectThermal fatigue life distributionen
dc.subjectSolder layeren
dc.subjectInsulated gate bipolar transistor (IGBT) moduleen
dc.title絕緣柵雙極電晶體在JEDEC熱循環標準下之疲勞壽命與可靠度評估zh_TW
dc.titleThermal Fatigue Life and Reliability Evaluation of Insulated Gate Bipolar Transistor under JEDEC-Specified Thermal Cyclingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾添東(Tien-Tung Chung),詹魁元(Kuei-Yuan Chan)
dc.subject.keyword絕緣柵雙極電晶體,焊接層,參數不確定性,熱疲勞壽命分布,可靠度,zh_TW
dc.subject.keywordInsulated gate bipolar transistor (IGBT) module,Solder layer,Parameter uncertainty,Thermal fatigue life distribution,Reliability,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201802727
dc.rights.note未授權
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved