請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22021完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Yi-Chun Lu | en |
| dc.contributor.author | 盧怡君 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:58:20Z | - |
| dc.date.copyright | 2018-09-04 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 1. Freiss, G. and D. Chalbos, PTPN13/PTPL1: An Important Regulator of Tumor Aggressiveness. Anti-Cancer Agents in Medicinal Chemistry, 2011. 11(1): p. 78-88.
2. Sato, T., et al., Fap-1 - a Protein-Tyrosine-Phosphatase That Associates with Fas. Science, 1995. 268(5209): p. 411-415. 3. Maekawa, K., et al., Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein I kappa-B alpha through interaction between the PDZ1 domain and ankyrin repeats. Biochemical Journal, 1999. 337: p. 179-184. 4. Fan, C.G., J.S. Yang, and J.F. Engelhardt, Temporal pattern of NF kappa B activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science, 2002. 115(24): p. 4843-4853. 5. Kawai, H., L.H. Nie, and Z.M. Yuan, Inactivation of NF-kappa B-dependent cell survival, a novel mechanism for the proapoptotic function of c-abl. Molecular and Cellular Biology, 2002. 22(17): p. 6079-6088. 6. Sato, S., N. Fujita, and T. Tsuruo, Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. J Biol Chem, 2002. 277(42): p. 39360-7. 7. Kuchay, S., et al., FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol, 2013. 15(5): p. 472-80. 8. Yao, H., et al., Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. British Journal of Cancer, 2004. 91(9): p. 1718-1725. 9. Yeh, S.H., et al., Genetic characterization of Fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clinical Cancer Research, 2006. 12(4): p. 1097-1108. 10. Revillion, F., et al., Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. International Journal of Cancer, 2009. 124(3): p. 638-643. 11. Nakahira, M., et al., Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity, 2007. 26(2): p. 163-176. 12. Wansink, D.G., et al., Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 2004. 19(1): p. 50-60. 13. Glondu-Lassis, M., et al., Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. International Journal of Biochemistry & Cell Biology, 2009. 41(11): p. 2173-2180. 14. Friedman, J.M., Leptin at 14 y of age: an ongoing story. American Journal of Clinical Nutrition, 2009. 89(3): p. 973s-979s. 15. Ameer, F., et al., De novo lipogenesis in health and disease. Metabolism, 2014. 63(7): p. 895-902. 16. Bjorntorp, P. and L. Sjostrom, Carbohydrate Storage in Man - Speculations and Some Quantitative Considerations. Metabolism-Clinical and Experimental, 1978. 27(12): p. 1853-1865. 17. Herman, M.A., et al., A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature, 2012. 484(7394): p. 333-U66. 18. Shimano, H., et al., Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. Journal of Clinical Investigation, 1997. 100(8): p. 2115-2124. 19. Lefebvre, P.J., Glucagon and Its Family Revisited. Diabetes Care, 1995. 18(5): p. 715-730. 20. Mueckler, M., et al., Sequence and Structure of a Human Glucose Transporter. Science, 1985. 229(4717): p. 941-945. 21. Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 2013. 34(2-3): p. 121-138. 22. Manel, N., et al., The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV envelopes and their interaction alters glucose metabolism. Blood, 2003. 102(11): p. 769a-769a. 23. Macintyre, A.N., et al., The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metabolism, 2014. 20(1): p. 61-72. 24. Brockmann, K., The expanding phenotype of GLUT1-deficiency syndrome. Brain & Development, 2009. 31(7): p. 545-552. 25. De Giorgis, V. and P. Veggiotti, GLUT1 deficiency syndrome 2013: Current state of the art. Seizure-European Journal of Epilepsy, 2013. 22(10): p. 803-811. 26. Gras, D., et al., GLUT1 deficiency syndrome: An update. Revue Neurologique, 2014. 170(2): p. 91-99. 27. Pearson, T.S., et al., Phenotypic Spectrum of Glucose Transporter Type 1 Deficiency Syndrome (Glut1 DS). Current Neurology and Neuroscience Reports, 2013. 13(4). 28. Suls, A., et al., Early-Onset Absence Epilepsy Caused by Mutations in the Glucose Transporter GLUT1. Annals of Neurology, 2009. 66(3): p. 415-419. 29. Santer, R., et al., Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome (vol 17, pg 324, 1997). Nature Genetics, 1998. 18(3): p. 298-298. 30. Nagamatsu, S., et al., Glucose Transporter Expression in Brain - Cdna Sequence of Mouse Glut3, the Brain Facilitative Glucose Transporter Isoform, and Identification of Sites of Expression by Insitu Hybridization. Journal of Biological Chemistry, 1992. 267(1): p. 467-472. 31. Simpson, I.A., et al., The facilitative glucose transporter GLUT3: 20 years of distinction. American Journal of Physiology-Endocrinology and Metabolism, 2008. 295(2): p. E242-E253. 32. Silver, I.A. and M. Erecinska, Extracellular Glucose-Concentration in Mammalian Brain - Continuous Monitoring of Changes during Increased Neuronal-Activity and Upon Limitation in Oxygen-Supply in Normoglycemic, Hypoglycemic, and Hyperglycemic Animals. Journal of Neuroscience, 1994. 14(8): p. 5068-5076. 33. Amann, T. and C. Hellerbrand, GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 2009. 13(12): p. 1411-1427. 34. Amann, T., et al., Analysis of a promoter polymorphism of the GLUT1 gene in patients with hepatocellular carcinoma. Mol Membr Biol, 2011. 28(3): p. 182-6. 35. Amann, T., et al., GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis. American Journal of Pathology, 2009. 174(4): p. 1544-1552. 36. Ramani, P., A. Headford, and M.T. May, GLUT1 protein expression correlates with unfavourable histologic category and high risk in patients with neuroblastic tumours. Virchows Archiv, 2013. 462(2): p. 203-209. 37. Shim, B.Y., et al., Glucose transporter 1 (GLUT1) of anaerobic glycolysis as predictive and prognostic values in neoadjuvant chemoradiotherapy and laparoscopic surgery for locally advanced rectal cancer. International Journal of Colorectal Disease, 2013. 28(3): p. 375-383. 38. Younes, M., et al., Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Research, 1996. 56(5): p. 1164-1167. 39. Gallamini, A., C. Zwarthoed, and A. Borra, Positron Emission Tomography (PET) in Oncology. Cancers, 2014. 6(4): p. 1821-1889. 40. Kaira, K., et al., Biological significance of F-18-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer, 2014. 83(2): p. 197-204. 41. Chan, D.A., et al., Targeting GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality. Science Translational Medicine, 2011. 3(94). 42. Liu, Y., et al., A Small-Molecule Inhibitor of Glucose Transporter 1 Downregulates Glycolysis, Induces Cell-Cycle Arrest, and Inhibits Cancer Cell Growth In Vitro and In Vivo. Molecular Cancer Therapeutics, 2012. 11(8): p. 1672-1682. 43. Huang, S.H. and M.P. Czech, The GLUT4 glucose transporter. Cell Metabolism, 2007. 5(4): p. 237-252. 44. Govers, R., Cellular Regulation of Glucose Uptake by Glucose Transporter GLUT4. Advances in Clinical Chemistry, Vol 66, 2014. 66: p. 173-240. 45. Reaven, G.M., The insulin resistance syndrome: Definition and dietary approaches to treatment. Annual Review of Nutrition, 2005. 25: p. 391-406. 46. Kim, S.H. and G.M. Reaven, Insulin resistance and hyperinsulinemia - You can't have one without the other. Diabetes Care, 2008. 31(7): p. 1433-1438. 47. Mcgarry, J.D., What If Minkowski Had Been Ageusic - an Alternative Angle on Diabetes. Science, 1992. 258(5083): p. 766-770. 48. Gross, D.N., M. Wan, and M.J. Birnbaum, The role of FOXO in the regulation of metabolism. Current Diabetes Reports, 2009. 9(3): p. 208-214. 49. Nakae, J., V. Barr, and D. Accili, Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. Embo Journal, 2000. 19(5): p. 989-996. 50. Klotz, L.O., et al., Redox regulation of FoxO transcription factors. Redox Biology, 2015. 6: p. 51-72. 51. Pendergrass, M., et al., Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. American Journal of Physiology-Endocrinology and Metabolism, 2007. 292(1): p. E92-E100. 52. Ryder, J.W., M. Gilbert, and J.R. Zierath, Skeletal muscle and insulin sensitivity: Pathophysiological alterations. Frontiers in Bioscience, 2001. 6: p. D154-D163. 53. Parker, V.E.R., et al., Mechanistic insights into insulin resistance in the genetic era. Diabetic Medicine, 2011. 28(12): p. 1476-1486. 54. Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harbor Perspectives in Biology, 2014. 6(1). 55. Copps, K.D. and M.F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012. 55(10): p. 2565-2582. 56. Lackey, D.E. and J.M. Olefsky, Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 2016. 12(1): p. 15-28. 57. Petersen, M.C., et al., Insulin Receptor Thr1160 Phosphorylation Mediates Lipid-induced Hepatic Insulin Resistance. Diabetes, 2016. 65: p. A13-A13. 58. Samuel, V.T. and G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. Journal of Clinical Investigation, 2016. 126(1): p. 12-22. 59. Howarth, C., P. Gleeson, and D. Attwell, Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab, 2012. 32(7): p. 1222-32. 60. Harris, J.J., R. Jolivet, and D. Attwell, Synaptic Energy Use and Supply. Neuron, 2012. 75(5): p. 762-777. 61. Ivannikov, M.V., M. Sugimori, and R.R. Llinas, Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium, 2010. 47(6): p. 507-513. 62. van Hall, G., et al., Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow and Metabolism, 2009. 29(6): p. 1121-1129. 63. Lutas, A. and G. Yellen, The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends in Neurosciences, 2013. 36(1): p. 32-40. 64. Simpson, I.A., A. Carruthers, and S.J. Vannucci, Supply and demand in cerebral energy metabolism: the role of nutrient transporters. Journal of Cerebral Blood Flow and Metabolism, 2007. 27(11): p. 1766-1791. 65. Dienel, G.A., Fueling and imaging brain activation. Asn Neuro, 2012. 4(5): p. 267-321. 66. Gandhi, G.K., et al., Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. Journal of Neurochemistry, 2009. 111(2): p. 522-536. 67. Rouach, N., et al., Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission. Science, 2008. 322(5907): p. 1551-1555. 68. Walls, A.B., et al., Robust Glycogen Shunt Activity in Astrocytes: Effects of Glutamatergic and Adrenergic Agents. Neuroscience, 2009. 158(1): p. 284-292. 69. DiNuzzo, M., et al., The Role of Astrocytic Glycogen in Supporting the Energetics of Neuronal Activity. Neurochemical Research, 2012. 37(11): p. 2432-2438. 70. Grayson, B.E., R.J. Seeley, and D.A. Sandoval, Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nature Reviews Neuroscience, 2013. 14(1): p. 24-37. 71. Lam, C.K.L., M. Chari, and T.K.T. Lam, CNS Regulation of Glucose Homeostasis. Physiology, 2009. 24(3): p. 159-170. 72. Grill, H.J. and M.R. Hayes, Hindbrain Neurons as an Essential Hub in the Neuroanatomically Distributed Control of Energy Balance. Cell Metabolism, 2012. 16(3): p. 296-309. 73. Jo, J., et al., Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput Biol, 2009. 5(3): p. e1000324. 74. Paz, G., et al., Molecular pathways involved in the improvement of non-alcoholic fatty liver disease. Journal of Molecular Endocrinology, 2013. 51(1): p. 167-179. 75. Reshef, L., et al., Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem, 2003. 278(33): p. 30413-6. 76. Casteels, C., et al., Construction and evaluation of quantitative small-animal PET probabilistic atlases for [(1)(8)F]FDG and [(1)(8)F]FECT functional mapping of the mouse brain. PLoS One, 2013. 8(6): p. e65286. 77. DeBay, D.R., et al., Butyrylcholinesterase-knockout reduces fibrillar beta-amyloid and conserves (18)FDG retention in 5XFAD mouse model of Alzheimer's disease. Brain Res, 2017. 1671: p. 102-110. 78. Benarroch, E.E., Brain glucose transporters Implications for neurologic disease. Neurology, 2014. 82(15): p. 1374-1379. 79. Musso, G., R. Gambino, and M. Cassader, Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care, 2010. 33(10): p. 2277-84. 80. Thomas, T., A.K. Voss, and P. Gruss, Distribution of a murine protein tyrosine phosphatase BL-beta-galactosidase fusion protein suggests a role in neurite outgrowth. Dev Dyn, 1998. 212(2): p. 250-7. 81. Biessels, G.J., et al., Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes & Endocrinology, 2014. 2(3): p. 246-255. 82. de la Monte, S.M., Type 3 diabetes is sporadic Alzheimer's disease: Mini-review. European Neuropsychopharmacology, 2014. 24(12): p. 1954-1960. 83. Kroner, Z., The Relationship between Alzheimer's Disease and Diabetes: Type 3 Diabetes? Alternative Medicine Review, 2009. 14(4): p. 373-379. 84. Talbot, K., et al., Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation, 2012. 122(4): p. 1316-1338. 85. Brands, A.M.A., et al., The effects of type 1 diabetes on cognitive performance - A meta-analysis. Diabetes Care, 2005. 28(3): p. 726-735. 86. Cukierman, T., H.C. Gerstein, and J.D. Williamson, Cognitive decline and dementia in diabetes - systematic overview of prospective observational studies. Diabetologia, 2005. 48(12): p. 2460-2469. 87. Stewart, R. and D. Liolitsa, Type 2 diabetes mellitus, cognitive impairment and dementia. Diabetic Medicine, 1999. 16(2): p. 93-112. 88. Strachan, M.W.J., et al., Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 1997. 20(3): p. 438-445. 89. Yang, Y. and W. Song, Molecular Links between Alzheimer's Disease and Diabetes Mellitus. Neuroscience, 2013. 250: p. 140-150. 90. Antony, S., et al., Hypoglycemia induced changes in cholinergic receptor expression in the cerebellum of diabetic rats. J Biomed Sci, 2010. 17: p. 7. 91. Copland, J.A., et al., IGF-1 controls GLUT3 expression in muscle via the transcriptional factor Sp1. Biochim Biophys Acta, 2007. 1769(11-12): p. 631-40. 92. Wilson, C.M., et al., Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Lett, 1995. 368(1): p. 19-22. 93. Agrawal, A., et al., Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol, 2007. 293(2): p. C621-31. 94. Baumann, M.U., S. Zamudio, and N.P. Illsley, Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. American Journal of Physiology-Cell Physiology, 2007. 293(1): p. C477-C485. 95. Kinni, H., et al., Cerebral metabolism after forced or voluntary physical exercise. Brain Research, 2011. 1388: p. 48-55. 96. Rajakumar, A., et al., Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons. Journal of Biological Chemistry, 2004. 279(25): p. 26768-26779. 97. Marosi, K. and M.P. Mattson, BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology and Metabolism, 2014. 25(2): p. 89-98. 98. Yu, J., et al., IGF-1 induces hypoxia-inducible factor 1alpha-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells. Brain Res, 2012. 1430: p. 18-24. 99. Taha, C., et al., The insulin-dependent biosynthesis of GLUT1 and GLUT3 glucose transporters in L6 muscle cells is mediated by distinct pathways. Roles of p21ras and pp70 S6 kinase. J Biol Chem, 1995. 270(42): p. 24678-81. 100. Uemura, E. and H.W. Greenlee, Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Exp Neurol, 2006. 198(1): p. 48-53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22021 | - |
| dc.description.abstract | FAP-1 (Fas-associated phosphotase-1) 是一個非受器型的蛋白質酪胺酸去磷酸酶,在許多腫瘤中的表現量較低,因而被認為可能是腫瘤抑制基因。FAP-1 大多的功能是在細胞實驗中驗證,而在生理及病理上實際的功能仍尚待以動物實驗證實。在本篇論文中,我們將利用來自Dr. Hendriks 實驗室的FAP-1 phosphatase-deficient (FAP-1△P/△P) 小鼠作為動物實驗模型,來探討FAP-1 的生理功能。有趣的是,我們發現在C57BL/6J的基因背景下,FAP-1△P/△P 小鼠有肥胖的表現型產生,利用MRI全身體組成分析後,FAP-1△P/△P小鼠具有較高的脂肪含量比例,將小鼠犧牲後取得的脂肪重量也得到較重的結果。脂肪過量的原因可能是由過度的飲食或是過多的脂肪生合成反應造成,因此我們首先檢視進食、進水量,結果指出FAP-1△P/△P小鼠並無攝食較多的行為。再以組織切片染色檢視肝臟及白色脂肪組織的細胞型態,脂肪組織有脂肪細胞肥大的表型產生,但並無過多的脂肪堆積在肝臟內形成脂肪肝。血液分析顯示FAP-1△P/△P小鼠在禁食時有較高的血糖值、胰島素濃度及HOMA-IR數值,即FAP-1△P/△P小鼠有胰島素抗性(insulin resistance) 的表型,再以管餵葡萄糖耐受性實驗(OGTT)及胰島素耐受性實驗(ITT)得到證實。丙酮酸耐受性實驗(pyruvate tolerance test)結果則指出FAP-1△P/△P小鼠並無較旺盛的糖質新生。然而,小鼠正子斷層掃描實驗 (Positron emission tomography, PET)顯示FAP-1△P/△P小鼠的腦部有較差的葡萄糖吸收。本篇論文的研究指出,FAP-1△P/△P小鼠較高的禁食血糖值及胰島素抗性可能是由於腦部對於葡萄糖的不吸收所導致。未來的研究將著重於FAP-1是透過何種機制來調控腦部吸收葡萄糖,進而避免胰島素抗性產生。 | zh_TW |
| dc.description.abstract | FAP-1 (Fas-associated phosphotase-1), a non-receptor protein tyrosine
phosphatase, was found decreased in several tumors and thus suggested a putative tumor suppressor gene. Though a variety of FAP-1 functions were revealed by cell culture-based assay, the physiological and pathological function of FAP-1 is still remained unclear and need to be validated in vivo. The current study proposed to investigate the FAP-1 function by using the FAP-1 phosphatase-deficient (FAP-1△P/△P)mouse model, which was established and delivered from Dr. Hendriks lab. Interestingly, we found an overweight/obese phenotype of FAP-1△P/△P mice with the B6J genetic background, which were mainly contributed by an increased body fat composition. FAP-1△P/△P mice have hypertrophic adipocytes but no fatty liver. Blood examination revealed an elevation of fasting glucose and insulin concentration, and also a significantly higher HOMA-IR index in FAP-1△P/△P mice. It thus suggested an insulin resistance phenotype in FAP-1△P/△P mice, which had been further confirmed by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Further pyruvate tolerance test (PTT) did not show elevated hepatic gluconeogenesis; instead an impaired glucose uptake in the brain of FAP-1△P/△P mice was identified by the positron emission tomography (PET) test. The results suggested that the higher blood glucose and insulin resistance phenotypes in the FAP-1△P/△P mice could be caused by impaired glucose uptake in brain. This possibility and the underlying mechanism for FAP-1 functions in regulating the glucose uptake in brain to avoid insulin resistance mice is the next issue to be addressed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:58:20Z (GMT). No. of bitstreams: 1 ntu-107-R05445131-1.pdf: 5501094 bytes, checksum: d367a19308035210354dcc5c667f137c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………....I
中文摘要……………………………………………………………………….…….II 英文摘要…………………………………………………………………………….III 目錄…………………………………………………………………………………..IV 序論……………………………………………………………………………………1 一、Fas-associated phosphatsse-1 (FAP-1)基因之蛋白質結構與特性………...1 二、脂肪的生合成………………………………………………..……………..2 三、葡萄糖的代謝調控………………………………………………...….……3 四、胰島素抗性…………………………………………………………………4 五、葡萄糖在腦中的代謝………………………………………………………5 研究目的………………………………………………………………………………7 材料與方法……………………………………………………………………………8 一、實驗動物……………………………………………………………………8 二、抗體……………………………………………………………………..…..8 三、小鼠組織之蛋白質萃取………………………………………..………..…9 四、蛋白質定量分析…………………………………………………..……..…9 五、SDS-PAGE 蛋白質膠體電泳……………………………….…………..…9 六、西方墨點法…………………………………………………………..…..…9 七、RNA 萃取與反轉錄定量聚合酶連鎖反應…………….………...………10 八、小鼠耐受性實驗………………………………………………………..…11 九、小鼠全身體組成分析…………………………………………..…………11 十、小鼠正子斷層掃描……………………………………………..…………11 十一、小鼠進食、進水量測試……………………………..…………………11 研究結果………………………………………………………………………..……12 一、FAP-1△P/△P小鼠有體重較重的表型產生…………………………………12 二、FAP-1△P/△P小鼠有較多的脂肪組織………………………………………12 三、FAP-1△P/△P 小鼠無進食、進水量的差異……………………………….…12 四、FAP-1△P/△P 小鼠有脂肪細胞肥大的表型…………………………..……12 五、FAP-1△P/△P 小鼠的血液檢查顯示高血糖及胰島素抗性的表型…..….…13 六、葡萄糖、胰島素及丙酮酸耐受性實驗顯示FAP-1△P/△P 小鼠有較WT 小鼠 差的葡萄糖吸收及胰島素敏感性……………………………………..…13 七、正子斷層掃描實驗顯示FAP-1△P/△P 小鼠在禁食後的腦部有較WT 小鼠 差的葡萄糖吸收………………………………………………………..…14 八、AP-1△P/△P 小鼠在禁食後腦部的葡萄糖載體蛋白3 (glucose transporter 3, GLUT3) 表現量較WT 小鼠低,非禁食時則較高…………..…………15 結果討論……………………………………………………………..………………16 小鼠基因型背景、腸道菌叢與FAP-1 交互作用的可能性…………….…………16 FAP-1 在神經修復中可能的角色……………………………………………..……16 FAP-1 可能為第三型糖尿病的調控因子…………………………………….……17 FAP-1 調控GLUT3 表現量的可能路徑……………………………………………17 在禁食及非禁食情況下,FAP-1 調控GLUT3 表現量的可能路徑………………18 圖附錄………………………………………………………………………………..19 圖一、FAP-1△P/△P 小鼠有體重較重的表型產生……………………………..…….19 圖二、FAP-1△P/△P 小鼠體重較WT 小鼠重且脂肪較多…………………………...20 圖三、FAP-1△P/△P 小鼠有脂肪細胞肥大的表型…………………………..………22 圖四、FAP-1△P/△P 小鼠無進食、進水量的差異……………………………………23 圖五、FAP-1△P/△P 小鼠無脂肪肝的表型……………………………………………24 圖六、FAP-1△P/△P 小鼠血中三酸甘油脂及總膽固醇值較WT 沒有顯著差異,但有 較高的血糖及胰島素抗性…………………………………………………………..25 圖七、葡萄糖耐受性實驗顯示FAP-1△P/△P 小鼠有較WT 差的葡萄糖吸收….…27 圖八、胰島素耐受性實驗顯示FAP-1△P/△P 小鼠有較WT 差的胰島素敏感性….28 圖九、丙酮酸耐受性實驗顯示FAP-1△P/△P 小鼠之肝臟糖質新生與WT 無顯著差 異………………………………………………………………………………….….29 圖十、正子斷層掃描實驗顯示FAP-1△P/△P 小鼠在禁食後的腦部有較WT 小鼠差的 葡萄糖吸收…………………………………………………………………….…….30 圖十一、正子斷層掃描實驗顯示FAP-1△P/△P 小鼠在禁食後的腦部有較WT 小鼠差 的葡萄糖吸收,在非禁食時則有較好的葡萄糖吸收…………………..…………..31 圖十二、 FAP-1△P/△P 小鼠在禁食後的葡萄糖載體蛋白3(glucose transporter 3, GLUT3)表現量較WT小鼠低,非禁食時則較高…………………………………...32 圖十三、在禁食時,FAP-1 調控 GLUT3 蛋白質及mRNA 表現量可能的路徑 圖……………………………………………………………………………………..33 參考文獻………………………………………………………………………..……34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葡萄糖吸收 | zh_TW |
| dc.subject | FAP-1 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 脂肪細胞肥大 | zh_TW |
| dc.subject | 胰島素抗性 | zh_TW |
| dc.subject | insulin resistance | en |
| dc.subject | glucose uptake | en |
| dc.subject | FAP-1 | en |
| dc.subject | overweight | en |
| dc.subject | hypertrophic adipocytes | en |
| dc.title | FAP-1 基因調控葡萄糖代謝之功能研究 | zh_TW |
| dc.title | A potential function of FAP-1 gene in regulating the glucose metabolism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),周祖述(Tzuu-Shuh Jou),黃怡萱(Yi-Shuian Huang) | |
| dc.subject.keyword | FAP-1,肥胖,脂肪細胞肥大,胰島素抗性,葡萄糖吸收, | zh_TW |
| dc.subject.keyword | FAP-1,overweight,hypertrophic adipocytes,insulin resistance,glucose uptake, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201802616 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
