請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧 | |
| dc.contributor.author | Chih-Yen Wang | en |
| dc.contributor.author | 王智諺 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:57:23Z | - |
| dc.date.copyright | 2018-10-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | 1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
2. Chen, F., et al., New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med, 2015. 13: p. 45. 3. Viollet, B., et al., Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond), 2012. 122(6): p. 253-70. 4. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-74. 5. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501. 6. Zakikhani, M., et al., Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res, 2006. 66(21): p. 10269-73. 7. Yung, M.M., et al., Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer, 2013. 13: p. 327. 8. Karnevi, E., et al., Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer, 2013. 13: p. 235. 9. Rothwell, P.M., et al., Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 2011. 377(9759): p. 31-41. 10. Rose, P.W., E.K. Watson, and L.S. Jenkins, Aspirin for prevention of cancer and cardiovascular disease. Br J Gen Pract, 2011. 61(587): p. 412-5. 11. Chan, A.T., S. Ogino, and C.S. Fuchs, Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med, 2007. 356(21): p. 2131-42. 12. Ruschoff, J., et al., Aspirin suppresses the mutator phenotype associated with hereditary nonpolyposis colorectal cancer by genetic selection. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11301-6. 13. Thun, M.J., S.J. Henley, and C. Patrono, Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues. JNCI: Journal of the National Cancer Institute, 2002. 94(4): p. 252-266. 14. Engelman, J.A., J. Luo, and L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 2006. 7(8): p. 606-19. 15. Riehle, R.D., S. Cornea, and A. Degterev, Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. Adv Exp Med Biol, 2013. 991: p. 105-39. 16. Smith, J.S., et al., PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst, 2001. 93(16): p. 1246-56. 17. Ponce, D.P., et al., Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of beta-catenin transcriptional activity. J Cell Physiol, 2011. 226(7): p. 1953-9. 18. Hay, N., Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta, 2011. 1813(11): p. 1965-70. 19. Bradley, C.A., Diabetes: Metformin in breast cancer. Nat Rev Endocrinol, 2017. 13(5): p. 251. 20. Garcia Rodriguez, L.A., et al., New use of low-dose aspirin and risk of colorectal cancer by stage at diagnosis: a nested case-control study in UK general practice. BMC Cancer, 2017. 17(1): p. 637. 21. De Monte, A., et al., Metformin and aspirin treatment could lead to an improved survival rate for Type 2 diabetic patients with stage II and III colorectal adenocarcinoma relative to non-diabetic patients. Mol Clin Oncol, 2018. 8(3): p. 504-512. 22. Amaral, M.E.A., et al., Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs, 2018. 23. Lee, J.J., K. Loh, and Y.S. Yap, PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med, 2015. 12(4): p. 342-54. 24. Kaur, P., et al., A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer, 2012. 12: p. 120. 25. Silva, V.L., et al., Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer. PLoS One, 2016. 11(8): p. e0161290. 26. Bachmanov, A.A., et al., Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet, 2002. 32(6): p. 435-43. 27. Dutta, S. and P. Sengupta, Men and mice: Relating their ages. Life Sci, 2016. 152: p. 244-8. 28. Alkner, S., et al., Contralateral breast cancer can represent a metastatic spread of the first primary tumor: determination of clonal relationship between contralateral breast cancers using next-generation whole genome sequencing. Breast Cancer Res, 2015. 17: p. 102. 29. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9. 30. Wlodkowic, D., et al., Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol, 2011. 103: p. 55-98. 31. Inwald, E.C., et al., Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat, 2013. 139(2): p. 539-52. 32. Wu, K., et al., Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem, 2015. 290(15): p. 9842-54. 33. Ekambaram, P., et al., The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Rev, 2011. 30(3-4): p. 397-408. 34. Wang, H., et al., The prognosis analysis of different metastasis pattern in patients with different breast cancer subtypes: a SEER based study. Oncotarget, 2017. 8(16): p. 26368-26379. 35. Kowanetz, M., et al., Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A, 2010. 107(50): p. 21248-55. 36. Zhang, Y., et al., Elemene inhibits the migration and invasion of 4T1 murine breast cancer cells via heparanase. Mol Med Rep, 2017. 16(1): p. 794-800. 37. Malumbres, M., Cyclin-dependent kinases. Genome Biol, 2014. 15(6): p. 122. 38. Wang, H., et al., The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature, 2017. 546(7658): p. 426-430. 39. Tanami, H., et al., Involvement of cyclin D3 in liver metastasis of colorectal cancer, revealed by genome-wide copy-number analysis. Lab Invest, 2005. 85(9): p. 1118-29. 40. Sai, J., et al., Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis. J Biol Chem, 2008. 283(39): p. 26538-47. 41. Joshi, S., et al., Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One, 2014. 9(4): p. e95893. 42. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009. 9: p. 162. 43. Marigo, I., et al., Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev, 2008. 222: p. 162-79. 44. Hu, X., et al., Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression. Sci Rep, 2016. 6: p. 26252. 45. Wu, T., et al., mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep, 2016. 6: p. 20250. 46. Zhao, T., et al., Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal(-/-) mice. Oncogene, 2015. 34(15): p. 1938-48. 47. Srivastava, M.K., et al., Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res, 2010. 70(1): p. 68-77. 48. Orr, K., et al., Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs). Oncotarget, 2016. 7(34): p. 55458-55472. 49. Harris, R.E., B.C. Casto, and Z.M. Harris, Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol, 2014. 5(4): p. 677-92. 50. Vane, J.R. and R.M. Botting, The mechanism of action of aspirin. Thromb Res, 2003. 110(5-6): p. 255-8. 51. Jana, D., et al., Role of Cyclooxygenase 2 (COX-2) in Prognosis of Breast Cancer. Indian J Surg Oncol, 2014. 5(1): p. 59-65. 52. Sinha, P., et al., Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res, 2007. 67(9): p. 4507-13. 53. Diez-Juan, A., et al., Selective inactivation of p27(Kip1) in hematopoietic progenitor cells increases neointimal macrophage proliferation and accelerates atherosclerosis. Blood, 2004. 103(1): p. 158-61. 54. Pentimalli, F., et al., RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines. Oncogene, 2018. 55. Hagenbuchner, J., et al., The anti-apoptotic protein BCL2L1/Bcl-xL is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. J Biol Chem, 2010. 285(10): p. 6904-12. 56. Iritani, B.M. and R.N. Eisenman, c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci U S A, 1999. 96(23): p. 13180-5. 57. Bretones, G., M.D. Delgado, and J. Leon, Myc and cell cycle control. Biochim Biophys Acta, 2015. 1849(5): p. 506-16. 58. Shankar, D.B., et al., The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell, 2005. 7(4): p. 351-62. 59. Marigo, I., et al., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 2010. 32(6): p. 790-802. 60. Morales, J.K., et al., GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat, 2010. 123(1): p. 39-49. 61. Baselga, J., Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011. 16 Suppl 1: p. 12-9. 62. Lien, E.C., et al., Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal, 2017. 10(510). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22003 | - |
| dc.description.abstract | 背景與研究目的:近年的研究發現 Metformin 有抗腫瘤的效應;而Aspirin 運用其抗發炎能力和對其路徑下游的代謝反應,也有抗腫瘤的效果。依照之前研究發現 Metformin 可以抑制 PI3K/AKT/mTOR 代謝路徑上的效果,而在有些的實驗上 Aspirin 可以減緩腫瘤細胞成長速度,原因也可能是作用在 PI3K/AKT/mTOR得效果,本研究探討合併使用了 Metformin 和 Aspirin 是否可以減緩早期低細胞數的腫瘤成長速度,以達到減緩少量細胞發生後的實質腫瘤體積的體積,和早期的轉移的發生。
材料與方法:實驗中利用腫瘤細胞株為 4T1;小鼠品系為BALB/cByJNarl。進行動物和細胞實驗,細胞實驗上先用MTT觀察藥物對細胞活性的影響,再用western探討可能的機制,實驗分成 Control 組、 DMSO 組、Aspirin 2mM 組、Metformin10mM 組、Metformin 20mM 組、Metformin 10mM+Aspirin 2mM 組、Metformin 20mM+Aspirin 2mM 組觀察細胞活性和 PI3K/AKT/mTOR 蛋白表現,動物實驗部份,利用 BALB/cByJNarl 母鼠先餵食含 Metformin 和 Aspirin 的水 10 天後種殖癌細胞當作原位腫瘤,接著依照時間點的不同種殖第 2 次細胞當作不同時間轉移,並觀察轉移的發生率和腫瘤的大小。 結果:本實驗的結果顯示在細胞實驗同時加入了 Metformin 和 Aspirin 會比只單純加入 Metformin 更能降低細胞活性,而且 Aspirin 可以增強 Metformin 的抑制癌細胞活性,而在 western 中 Metformin 和 Aspirin 會比只單純加入 Metformin 或Aspirin 增加抑制了 PDK1 蛋白質活性,動物實驗中腫瘤的成長體積上,有餵兩種藥的組別腫瘤體積比對照組的腫瘤體積還要小,且也產生了統計上的顯著差距,而生存率分析上面有餵藥的小鼠生存率,會比控制組還要長也有顯著差距。而在第二顆腫瘤上有餵藥的發生率是比沒有餵藥的還要低,而且腫瘤生長速度也比較慢,這邊也使用 NCBI 上的微陣列資料分析,經過分析後比對出有跟 PDK1有關的基因,發現代謝路徑上 PI3K/AKT/mTOR 基因表現有達顯著差異,動物實驗上預防轉移的結果與微陣列上的分析符合,免疫染色上,控制組的 ki-67 染色表現量比用藥組還要高,而 PI3K 和 PDK1 的染色對照組也比實驗組高,總和上述結果是符合腫瘤大小表現。 結論:合併 Metformin 和 Aspirin 的藥物治療確實會比只單純只含有一種藥物的治療有效,而在細胞實驗結果原因是 Aspirin 可能會增強 Metformin 抑制癌細胞的成長,而 PI3K/AKT/mTOR 蛋白質在合併 Metformin 和 Aspirin 也會被抑制,動物實驗中合併 Metformin 和 Aspirin 藥物治療會降低原位腫瘤的形成和第二顆腫瘤的發生機率。 | zh_TW |
| dc.description.abstract | Background and Purpose: Recently studies have shown that Metformin has an anti-tumor effect. Aspirin has anti-inflammatory abilities and can influence downstream metabolic reactions, and it also has an anti-tumor effect. According to previous studies, Metformin can also inhibit the effects of PI3K/AKT/mTOR metabolic pathways. And Aspirin can slow the growth rate of tumor cells in some experiments and may also be affected by PI3K/AKT/mTOR. The main purpose of this study is to investigate the effect of antitumor growth rate abilities in early stage cancer and early stage metastasis when treated with Metformin and Aspirin.
Materials and Methods: Female BALB/cByJNarl strain mice and cancer cell lines 4T1 were used in this study. In vitro study, the viability of the cells and their probability mechanisms cells were tested by using MTT assay after drug treatment. Western blotting, respectively the experiment was grouped by the following protocols: control group, DMSO group, Aspirin 2mM group, Metformin 10mM group, Metformin 20mM group, Metformin 10mM+Aspirin 2mM group and Metformin 20mM+Aspirin 2mM group, to test the cell’s viability and PI3K/AKT/mTOR protein expression. In vivo study, mice were treated with drugs 10 days before the start of the experiment. The first implanted tumor was referred to as the in situ tumor. And the later implanted was referred to as the metastasis tumor. The probability of the metastasis tumor formatting and tumor growth rate were observed. Results: The in vitro study shows that the Metformin combined with Aspirin treatment can inhibit a cell viability more than just a solely Metformin treatment. In the resort of western blotting, Metformin combination with Aspirin treatment can down regulate the PDK1 expression more than just using Metformin or Aspirin alone. In vivo study, animals’ drug-treated tumor volumes are statistically smaller than that of the control group. The survival rate of the treatment group had a significantly higher difference from that of the control group. In the metastasis model, the treatment group’s second tumor formatting rates and growth rates were lower than of the control group. This discrepancy in growth and formatting rates can be explained by the used Microarray data analysis, where a PDK1-related gene was chosen. The Microarray data demonstrated a significant lower expression of the PI3K/AKT/mTOR gene expression in tumor bearing mice. This delay in metastasis result matches the Microarray analysis. Immunohistochemistry staining showed that the control group’s ki-67, PI3K, and PDK1 expression was higher than that of treatment groups. Conclusion: In vitro study demonstrated that combine Metformin and Aspirin treatment has more effect than treatment with Metformin or Aspirin alone. The reason might be that Aspirin can enhance the Metformin antitumor ability. The expression of PI3K/AKT/mTOR protein is down regulated in combine treatment. In vivo study Metformin and Aspirin combine treatment can significantly reduce in situ tumor growth rate and the second tumor formation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:57:23Z (GMT). No. of bitstreams: 1 ntu-107-R05548051-1.pdf: 2431411 bytes, checksum: 92988120fc13b5c89a688c94b29cf877 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………….i
中文摘要………………………………………………………………..……………..ii 英文摘要……………………………………………………………………………...iv 簡寫表……………………………………………………………………………..…vii 目錄…………………………………………………...………………………….….viii 圖目錄……………………………………………………………………………........x 表目錄……………………………………………………………..……………….xii 第一章 緒論…………………………………………………………………………..1 1.1 腫瘤與癌症……………………………………………………………….1 1.2 每福敏 Metformin…………………...……………………………………2 1.3 Metformin 在癌症上的治療…………...……………...………………….3 1.4 Aspirin…………………………………………………………………….4 1.5 PI3K/AKT/mTOR pathway………………………………………….……5 1.6 研究動機及目的…………………….…………………………………….7 第二章 材料與方法………………………………………………………......………8 2.1 腫瘤細胞株……………………………………………………………….8 2.2 細胞實驗….………………………………………………………………8 2.2.1 細胞活性………………………………………..……………….……8 2.2.2 群落形成分析………………………………..………………….……9 2.2.3 細胞凋亡分析…………………………………..…………….……10 2.2.4 西方墨點法分析……………………………………………….……10 2.3 模式動物………………………………...………………………………11 2.4 動物實驗………………………………………………………..……….12 2.5 統計分析方法…………..……………………………………………….13 第三章 實驗結果……………………………………………………………………14 3.1 細胞實驗…………………………………………………………………14 3.1.1 細胞活性…………………………………..……..…………….……14 3.1.2 細胞群落形成分析………………………..……..…………….……15 3.1.3 細胞的細胞凋亡分析…………………………..……..……….……17 3.1.4 西方墨點法…………………………………………………...……..17 3.2 動物實驗模擬轉移發生在確診後第一年………………........…………19 3.2.1 腫瘤體積………………………………………..…………..….……20 3.2.2 存活率分析…………………………………………………...……..25 3.3 動物實驗模擬轉移發生在確診後第三年………………………………27 3.4 模擬不同初始腫瘤量接受治療的差別……………...…………………29 3.5 小鼠體重……...…………………………………………………………32 ix 3.6 腫瘤組織中免疫組織染色結果………………………………………34 3.5.1 ki-67 染色結果………………………….………..…………….……34 3.5.2 PI3K 染色結果…………………………………...…………...……..35 3.5.3 PDK1染色結果……………..…………………..………..…….……36 第四章 討論…………………………………………………………………………37 第五章 結論…………………………………………………………………………47 第六章 未來展望……………………………………………………………………48 第七章 參考文獻………………………………………………………………..…..49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙側腫瘤模型 | zh_TW |
| dc.subject | Metformin | zh_TW |
| dc.subject | Aspirin | zh_TW |
| dc.subject | 腫瘤轉移 | zh_TW |
| dc.subject | Metformin | en |
| dc.subject | binary tumor model | en |
| dc.subject | tumor metastasis | en |
| dc.subject | Aspirin | en |
| dc.title | 探討 Metformin 和Aspirin 的結合對腫瘤的形成和成長反應的影響 | zh_TW |
| dc.title | Combination Effects of Metformin and Aspirin on Tumor Formation and Growth Response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿,謝銘鈞,張富雄 | |
| dc.subject.keyword | Metformin,Aspirin,腫瘤轉移,雙側腫瘤模型, | zh_TW |
| dc.subject.keyword | Metformin,Aspirin,tumor metastasis,binary tumor model, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201801895 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
