請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(Wing-Kit Choi) | |
| dc.contributor.author | Bing-Han Chan | en |
| dc.contributor.author | 詹秉翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:56:15Z | - |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | [1] Reinitzer, F. (1888). Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie/Chemical Monthly. 9: 421-441.
[2] Lehmann, O. (1889). Über fliessende krystalle. Zeitschrift für physikalische Chemie. 4: 462-472. [3] Oswald, P. and Pieranski, P. (2005). Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments, CRC press. [4] Friedel, G. (1922). Les états mésomorphes de la matière. Annales de Physique. 9: 273-474. [5] Wu, S.T. (1994). Nematic liquid crystals. Optical Engineering-New York-Marcel Dekker Incorporated. 47: 1-1 [6] Goodby, J.W. and Leslie T.M. (1986). Smectic liquid crystals, U.S. Patents. US4613209 A [7] Broer, D. J., J. Lub, and G. N. Mol. (1995)'Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient.' Nature 378.6556: 467. [8] Wu, S.-T. (1986). Birefringence dispersions of liquid crystals. Physical Review A. 33: 1270 [9] Belyakov, V. A., & Dmitrienko, V. E. E. (1985). The blue phase of liquid crystals. Physics-Uspekhi, 28(7), 535-562.. [10] Wright, D. C., & Mermin, N. D. (1989). Crystalline liquids: the blue phases. Reviews of Modern physics, 61(2), 385. [11] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., & Kajiyama, T. (2002). Polymer-stab. [12] Crooker, P. P. (1989). Plenary Lecture. The blue phases. A review of experiments. Liquid Crystals, 5(3), 751-775. [13] Patel, J. S., & Meyer, R. B. (1987). Flexoelectric electro-optics of a cholesteric liquid crystal. Physical review letters, 58(15), 1538. [14] Yan, J., Cheng, H. C., Gauza, S., Li, Y., Jiao, M., Rao, L., & Wu, S. T. (2010). Extended Kerr effect of polymer-stabilized blue-phase liquid crystals. Applied Physics Letters, 96(7), 071105. [15] Samsung Develops World's First 'Blue Phase' Technology to Achieve 240 Hz Driving Speed for High-Speed Video (access date 23 April 2009). [16] Fujimori, K., Narutaki, Y., & Kimura, N. (2003). High Transmissive Advanced TFT-LCD Technology. Sharp Technical Journal, 34-37. [17] Fan, Y. Y., Chiang, H. C., Ho, T. Y., Chen, Y. M., Hung, Y. C., Lin, I. J., ... & Chang, B. C. (2004, May). P‐101: A Single‐Cell‐Gap Transflective LCD. In SID Symposium Digest of Technical Papers (Vol. 35, No. 1, pp. 647-649). Oxford, UK: Blackwell Publishing Ltd. [18] Liu, K. H., Cheng, C. Y., Shen, Y. R., Lai, C. M., Sheu, C. R., Fan, Y. Y., ... & Lin, I. J. (2003, February). A novel double gamma driving transflective TFT LCD. In Proceedings of the International Display Manufacturers Conference (pp. 215-218). [19] Zhou, F., & Yang, D. K. (2003, May). 8.2: Wavelength Divided Trans‐reflective Liquid Crystal Display. In SID Symposium Digest of Technical Papers (Vol. 34, No. 1, pp. 82-85). Oxford, UK: Blackwell Publishing Ltd. [20] Zhou, F., & Yang, D. K. (2004, May). 4.4: Polymer Stabilized Electrically Controlled Birefringence Transreflective Liquid Crystal Displays. In SID Symposium Digest of Technical Papers (Vol. 35, No. 1, pp. 38-41). Oxford, UK: Blackwell Publishing Ltd. [21] Oh‐e, M., & Kondo, K. (1995). Electro‐optical characteristics and switching behavior of the in‐plane switching mode. Applied physics letters, 67(26), 3895-3897. [22] Rao, L., Cheng, H. C., & Wu, S. T. (2010). Low voltage blue-phase LCDs with double-penetrating fringe fields. Journal of Display Technology, 6(8), 287-289. [23] Li, Y., Huang, S., Rong, N., Lu, J. G., Chen, C. P., Li, X., ... & Su, Y. (2016). Transmissive and transflective blue-phase LCDs with double-layer IPS electrodes. Journal of Display Technology, 12(2), 122-128. [24] Kim, M., Kim, M. S., Kang, B. G., Kim, M. K., Yoon, S., Lee, S. H., ... & Wu, S. T. (2009). Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays. Journal of Physics D: Applied Physics, 42(23), 235502. [25] Jiao, M., Li, Y., & Wu, S. T. (2010). Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Applied Physics Letters, 96(1), 011102. [26] Mao, J. L., Wang, J., Fan, H. X., & Wang, Q. H. (2016). Low-voltage and high-transmittance blue-phase liquid crystal display with concave electrode. Liquid Crystals, 43(4), 535-539. [27] Li, Y., & Wu, S. T. (2011). Transmissive and transflective blue-phase LCDs with enhanced protrusion electrodes. Journal of Display Technology, 7(7), 359-361. [28] Yan, J., Xu, D., Cheng, H. C., Wu, S. T., Lan, Y. F., & Tsai, C. Y. (2013). Turning film for widening the viewing angle of a blue phase liquid crystal display. Applied optics, 52(36), 8840-8844. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21981 | - |
| dc.description.abstract | 隨著人類科技的發展,日常生活中將會愈來愈多智慧型裝置是肯定的事情,而顯示器的需求更是隨之日益增加,液晶顯示器在近幾年來更是成為了不可或缺的產品,其中的藍相液晶更是被稱作未來最具發展潛力的顯示器材料之一,其具有亞毫秒的反應時間、暗態均向性等優勢,本論文主要為設計新的藍相液晶電極結構,解決藍相液晶顯示器過往大多存在著穿透率過低且操作電壓過高的問題。
本論文提出新的電極結構設計,自於西元2010年吳思聰教授團隊所開發的波浪型電極結構為發想,利用電極錯位的方式提供額外維度的水平電場,藉此來改善原先穿透率失效區的問題,進而提升最大穿透率,我們將此新設計結構簡單分為兩種並做了各種不同結構參數的配置,分別為三維波浪型電極結構 (I) 以及下方為整片畫素電極的三維波浪型電極結構 (II),此新電極結構設計與傳統波浪型電極結構相比,可以保持在原先低操作電壓的優勢下,使大穿透率提升5%至8.4%,而操作電壓約落在11伏特左右,且有效降低了原先結構轉折處之穿透率失效區面積。本論文最後則為二維波浪型和三維波浪型的綜合比較,探討其優缺點,我們發現當電極寬度w為1μm時,三維波浪型電極結構 (I) 的電光表現是最優異的,而當電極寬度w為大於2μm時,三維波浪型電極結構 (I) 的表現下降而三維波浪型電極結構 (II) 維持不變,又在製程難易度上有優勢,因此三維波浪型電極結構 (II) 整體來說是較佳的。 | zh_TW |
| dc.description.abstract | With the progress of technology, it is no doubt that we will have more smart devices in our life. Furthermore, the increased demand of the liquid crystal display will also make it indispensable in the recent years. The blue-phase mode liquid crystal is known to have tremendous potential for future. Blue phase liquid crystal (BPLC) has several advantages, such as sub-millisecond response time and isotropic dark state. This operational mode for LCDs also does not require anisotropic alignment layers. In this thesis, we propose a new electrode structure for BPLC-LCD to improve the transmittance and lower the operation voltage of previous studies.
In this thesis, we proposed a new electrode structure design. It is inspired by corrugated electrode structure, which was proposed by Prof S.T Wu’s group in 2010. Our new design is based on making electrodes mismatch, providing another horizontal electric field to improve the performance, and reduce the area of dead zone. There are two kinds of our new electrode designs. We try different parameters to find out its impact on the structure. There are 3D-Corrugated (I) and 3D-Corrugated (II) which has whole pixel electrodes in the bottom. These new designs can improve the transmittance up to 5% ~ 8.4% compare with traditional corrugated structure while still keeping in low operation voltage of about 11V. These new design reduce the dead zone area at the turning edge for the corrugated structure. At the end of this thesis, we compare the new design electrodes with the traditional corrugated electrodes, and discuss the advantages and disadvantages. We found when electrode width (w) is 1μm, the 3D-Corrugated (I) has best performance. When w is greater or equal to 2μm, the performance of 3D-Corrugated (I) got worse but 3D-Corrutaged (II) keeps having high transmission level. There is a great advantage of having easier fabrication process for 3D-Corrugated (II). Therefore, we believe the 3D-Corrugated (II) may be a better choice between our new design structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:56:15Z (GMT). No. of bitstreams: 1 ntu-107-R05941089-1.pdf: 4927772 bytes, checksum: 98382c951d3d5e57d473893034493670 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 液晶的介紹 1 1.1 何謂液晶 1 1.2 液晶物理性質 4 1.3 藍相液晶 6 1.3.1 藍相液晶的出現 6 1.3.2 藍相液晶的三態 7 1.3.3 藍相液晶的特性 7 1.3.4 晶格缺陷與溫寬 8 1.3.5 克爾效應 (Kerr effect) 10 1.3.6 藍相液晶的應用 11 第二章 顯示器介紹與文獻回顧 12 2.1 液晶顯示器 12 2.1.1 液晶顯示器的結構 12 2.1.2 液晶顯示器的類型 13 2.2 文獻回顧 15 2.2.1 蝕刻基板結構 16 2.2.2 牆型電極結構 17 2.2.3 波浪型電極結構 18 2.3 研究動機 18 第三章 模擬軟體之實驗架構 19 3.1 模擬軟體TechWiz LCD 3D介紹 19 3.1.1 材料參數 20 3.1.2 光罩設計 20 3.1.3 結構生成 21 3.1.3 液晶分析 22 3.1.4 光學分析 23 3.2 模擬軟體之驗證 24 3.2.1 波浪型電極結構文獻驗證 24 3.3 三維波浪型電極結構設計與動機 27 3.3.1 模擬軟體設定 28 3.3.2 結構設計 31 第四章 實驗結果與討論 33 4.1 三維波浪型電極結構 (I) 33 4.1.1 電極週期 (L) 對電壓與穿透率的影響 33 4.1.2 傾斜角度 (θ) 對電壓與穿透率的影響 35 4.1.3 液晶層厚度 (d) 對電壓與穿透率的影響 37 4.1.4 電極寬度 (w) 對電壓與穿透率的影響 39 4.1.5 電極間距 (g) 對電壓與穿透率的影響 40 4.1.6 結構視角對比圖 43 4.1.7 電極結構位移誤差 44 4.1.8 二維與三維波浪型結構 (I) 的比較 46 4.2 三維波浪型電極結構 (II) 51 4.2.1 電極週期 (L) 對電壓與穿透率的影響 51 4.2.2 傾斜角度 (θ) 對電壓與穿透率的影響 54 4.2.3 液晶層厚度 (d) 對電壓與穿透率的影響 55 4.2.4 電極寬度 (w) 對電壓與穿透率的影響 57 4.2.5 電極間距 (g) 對電壓與穿透率的影響 60 4.2.6 結構視角對比圖 62 4.2.7 電極結構錯位誤差 64 4.2.8 二維與三維波浪型結構 (II) 的比較 65 4.3 二維與三維波浪型電極結構之比較 68 第五章 結論與未來目標 71 參考文獻 73 | |
| dc.language.iso | zh-TW | |
| dc.title | 三維波浪型電極之低操作電壓和高光效率藍相液晶顯示器 | zh_TW |
| dc.title | Low Voltage and High Transmittance Blue-Phase Liquid Crystal Display with 3D-Corrugated Electrodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang Yan Lin),楊申語(Sen-Yeu Yang) | |
| dc.subject.keyword | 藍相液晶,波浪型電極結構,三維波浪型電極, | zh_TW |
| dc.subject.keyword | Blue phase liquid crystal (BPLC),Corrugated electrodes,3D-Corrugated, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU201803455 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
