Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21980
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorLi-Siang Guoen
dc.contributor.author郭禮翔zh_TW
dc.date.accessioned2021-06-08T03:56:11Z-
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett 71, 2331(1993)
[2] M.N.Baibich et al Phys. Rev. Lett. 61,2472(1988)
[3] G. H. Jonker, J. H. Van Santen, Physica, 16, 337 (1950)
[4] J. S. Moodera et al. Phys. Rev. Lett. 74, 16 (1995)
[5] J.S. Moodera, Lisa R. Kinder, Terrilyn M. Wong and R. Meservey Phys. Rev. Lett. 74, 3273 (1995)
[6]K. Char, M. S. Colclough, S. M. Garrison, N. Newman and G. Zaharchuk, Appl. Phys. Lett. 59, 733 (1991)
[7] K. Char, M. S. Colclough, L. P. Lee and G. Zaharchuk, Appl. Phys. Lett. 59, 2177 (1991)
[8] D. Winkler, Y. M. Zhang, P. Å. Nilsson, E. A. Stepantsov, and T. Claeson, Phys. Rev. Lett. 72, 1260(1994)
[9] Z. G. Ivanov, E. A. Stepantsov, T. Claeson, F. Wenger, S. Y. Lin, N. Khare, and P. Chaudhari, Phys. Rev. B 57, 602(1998)
[10] J. B. Philipp, C. Hofener, S. Thienhaus, J. Klein, L. Alff, and R. Gross. Phys. Rev. Lett. 62, R9248(2000)
[11] J. Gao, Yu. M. Boguslavskij, B. B. G. Klopman, D. Terpstra1, R. Wijbrans,G. J. Gerritsma and H. Rogalla, J. Appl. Phys. 72, 575 (1992)
[12] Verhoeven, M.A.J, Gerritsma, G.J.; Rogalla, H. ; Golubov, A.A., Applied Superconductivity, IEEE Transactions (Volume:5, Issue: 2)
[13] C. H. Kwon et al. United State Ptent. Patent No.US6445024 B1(1999)
[14] T. Umezawa1, D. J. Lew2, S. K. Streiffer3 and M. R. Beasley4, Appl. Phys. Lett. 63, 3221 (1993)
[15] M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre, and A. Fert. Appl. Phys. Lett. 82, 233 (2003)
[16] N. Missert1, T. E. Harvey1, R. H. Ono1 and C. D. Reintsema1, , Appl. Phys. Lett. 63, 1690 (1993)
[17] K Herrmann, Y Zhang, H -M Muck, J Schubert, W Zander and A I Braginski, Supercond. Sci. Technol. 4 583 (1993)
[18] L.M. Wang, Chen-Chung Liu, H.C. Yang, H. E. Horng. Thin solid film 457, 359 (2004)
[19]https://zh.wikipedia.org/wiki/%E6%8B%93%E6%89%91%E7%BB%9D%E7%BC%98%E4%BD%93
[20] Jozwiak, C. et al. Widespread spin polarization effects in photoemission from topological insulators. Phys. Rev. B 84, 165113 (2011)
[21] Li-Min Wang, Tien-Wei Yang, Chih-Yi Wang, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 3, APRIL 2016
[22] M. Pannetier, et al., Sensor and Actuatros A-Physical, 129, 146
[23] Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science340, 167–170 (2013)
[24] 中國科普博覽(www.kepu.com.cn)提供
[25] 國科會高瞻自然科學教學資源平台 磁性物質介紹
[26] D. K. Cheng, Field and Wave Electromagnetic, 2nd ed
[27] B. D. Cullity, Introduction to Magnetic Materials 1972
[28] M. Egilmez, R. Petterson, K. H. Chow, and J. Jung, Appl. Phys. Lett. 90, 232506 (2007)
[29] Zener, et al., C. Phys. Rev., 82 403 (1951).
[30] 黃榮俊, 拓樸絕緣體之能帶結構、輸運性質與場效電晶體元件之介紹與研究,物理雙月刊
[31] Lu, H. Z.; Shen, S. Q. Weak localization and weak antilocalization in topological insulators. Proc. SPIE 9167, Spintronics VII 2014, 91672E.
[32] Hikami, S., Larkin, A. I., & Nagaoka, Y. (1980). Spin-orbit interaction and magnetoresistance in the two dimensional random system. Progress of Theoretical Physics, 63(2), 707-710.
[33] Lu, H. Z., & Shen, S. Q. (2011). Weak localization of bulk channels in topological insulator thin films. Physical Review B, 84(12), 125138.
[34] Lu, H. Z., Shi, J., & Shen, S. Q. (2011). Competition between weak localization and antilocalization in topological surface states. Physical review letters,107(7), 076801.
[35] H. K. Onnes, Commun. Phys. Lab., 12, 120 (1911)
[36] W. Meissner, R. Ochsenfeld, Naturwissenschaften, 21, 787 (1993)
[37] J. G. Bednorz, and K. A. Mueller, Z. Phys., B64, 189 (1986)
[38] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett., 58, 908 (1987)
[39] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc., 128, 10012 (2006)
[40] W. C. Röntgen, Science14 February 1896:Vol. 3 no. 59 pp. 227-231
[41] W. H. Bragg and W. L. Bragg, Proc. R. Soc. Lond. A 1913 88
[42] Toray Research Cemter (http://www.toray.cn/trc/kinougenri/kouzou/kou006.html)
[43] Toray Research Cemter(http://www.toray.cn/trc/kinougenri/keitai/kei_006.html)
[44] S. S. Lee, J. R, Rhee, D G. Hwang and K. Rhie, Journal of Magnetics., 6(3), 83 (2001).
[45] D.X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong: Science 329 (2010) 821.
[46] S. X. Zhang, R. D. McDonald, A. Shekhter, Z. X. Bi, Y. Li, Q. X. Jia and S. T. Picraux, Appl. Phys. Lett. 101, 202403 (2012).
[47] Neamen: Fundamentals of Semiconductor Physics and Devices
[48] 物理學報, Acta Phys. Sin. Vol. 60, No.4, (2011) 046801
[49] J. Klein, C. Ho¨fener, S. Uhlenbruck, L. Alff, B. Bu¨chner, and R. Gross,
Europhys. Lett. 47, 371 (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21980-
dc.description.abstract本論文研究穿隧磁阻元件 (TMR) / 超導混合的感測元件,主要結構為在雙晶(bi-crystal) 基板上成長釔鋇銅氧 ( YBCO ) / 鈦酸鍶 (STO) / 鑭鈣錳氧 (LCMO),我們利用磁控濺鍍先在雙晶基板上沉積鑭鈣錳氧,製作成穿隧元件後再利用雷射脈衝蒸鍍 ( PLD ) 成長鈦酸鍶當作絕緣層去隔絕上下的超導層跟絕緣層,再接著也是利用雷射脈衝蒸鍍鍍上釔鋇銅氧。我們牛軛設計在有超導相變溫度以下,有超導環的磁阻會較大,從22%提升到27.5%。我們設計兩種不同的磁阻元件,一個是以鑭鈣錳氧薄膜,以及利用新的Washer-type的圖形設計。製作出來的鑭鈣錳氧薄膜像變溫度為240K以及已被銅氧超導相變溫度為86 K皆有良好的相變溫度,並量測元件特性。我們比較有有無超導環以及有無雙晶的樣品,因為雙晶上的缺陷導致在重複實驗上沒有看到良好的超導性質。
另一部份是探討鍗化鉍/鑭鈣錳氧雙層膜異質結構,我們先利用磁控濺鍍系統,先在下層鍍上鑭鈣錳氧,再用真空蒸鍍系統鍍上鍗化鉍薄膜,探討異質結構中的特性,鍗化鉍薄膜藉由Hikami-Larkin-Nagaoka(HLN)公式∆σ_xx=(αe^2)/(2π^2 ℏ)[Ψ(1/2+ℏ/(4el_φ^2 B))-ln(ℏ/(4el_φ^2 B))]做擬合得到α=1為自旋軌道交互作用力以及磁性散射皆很弱,異質結構的能隙為0.5eV左右,主要來自於鑭鈣錳氧的貢獻,計算出在Sample 1 之位能障高度 V_bi=5.48 eV,而位能障寬度 t=2.07 nm ;在Sample 2 之位能障高度 V_bi=5.52 eV,而位能障寬度 t=2.08 nm。異質接面最大的磁阻為4.5%
zh_TW
dc.description.abstractThis thesis studies the tunneling magnetoresistance / superconducting hybrid sensing components. The main structure is the growth of yttrium copper oxide (YBa2Cu3O7-δ) / barium titanate (SrTiO3) / barium calcium manganese oxide (La0.67Ca0.33MnO3) on a bi-crystal substrate. We use RF magnetron sputtering to deposit LCMO on the bi-crystal substrate, and then make the tunneling component and then use the laser pulse evaporation (PLD) to grow STO as the insulating layer to isolate the upper and lower superconducting layer and the insulating layer, and then YBCO is also plated by laser pulse evaporation. We use the yoke design below the superconducting phase transition temperature, and the reluctance ring has a larger reluctance, from 22% to 27.5%. We designed two different magnetoresistive elements, a YBCO film, and a new Washer-type graphic design. The LCMO film has a phase transition temperature of 240 K and a YBCO superconducting phase transition temperature of 86 K. It has a good phase transition temperature. We compare the presence or absence of superconducting rings and samples with or without twins because the defects on the twins did not show good tunneling reluctance properties in repeated experiments.
The other part is to explore the characteristics of Bi2Te3 / LCMO bilayer membrane heterostructure. We first use the RF magnetron sputtering system to first coat the lower layer with LCMO film and then vacuum-evaporate the Bi2Te3 film to explore the characteristics of the heterostructure. Bi2Te3 film by Hikami-Larkin-Nagaoka (HLN) formula ∆σ_xx=(αe^2)/(2π^2 ℏ)[Ψ(1/2+ℏ/(4el_φ^2 B))-ln(ℏ/(4el_φ^2 B))] do the fitting to get α=1. It shows that the spin-orbit interaction force and magnetic scattering are very weak, and the energy gap of the heterostructure is about 0.50 eV, mainly from the contribution of LCMO. Calculate the energy barrier height at sample 1 V_bi=5.48 eV, and the potential barrier width t=2.07 nm. The energy barrier height at sample 2 is V_bi=5.52 eV, and the potential barrier width is t = 2.08 nm. The maximum reluctance of the heterojunction is 4.5%.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:56:11Z (GMT). No. of bitstreams: 1
ntu-107-R04245008-1.pdf: 3984242 bytes, checksum: 397e0bb63a87235f58aa0b96c88a600d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
致謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 x
表目錄 xv
Chapter 1 緒論 - 1 -
1.1 前言 - 1 -
1.2 磁阻介紹之發展與應用 - 2 -
1.2.1巨磁阻材料 - 2 -
1.2.2 龐磁阻材料 - 3 -
1.2.3 穿隧元件磁阻發展 - 4 -
1.3 拓樸絕緣體特性 - 9 -
1.4混合感測元件 - 11 -
1.5 研究動機 - 13 -
Chapter 2 理論背景與原理介紹 - 14 -
2.1 磁性理論 - 14 -
2.1.1 磁性的產生 - 14 -
2.1.2 磁性的種類 - 14 -
2.2 磁阻效應 (magnetoresistance) - 19 -
2.2.1 磁阻原理 - 19 -
2.2.2 異向性磁阻 - 20 -
2.2.3 龐磁阻 - 20 -
2.2.4 穿隧磁阻 - 22 -
2.3 Weak localization (WL) 和Weak antilocalization (WAL) - 24 -
2.4 超導理論 - 28 -
2.4.1 超導發展歷史 - 28 -
2.4.2 超導體特性 - 28 -
2.4.3 超導體分類 - 29 -
第三章 實驗步驟與方法 - 31 -
3.1 實驗流程 - 31 -
3.2 基板選擇與清洗 - 32 -
3.3 樣品製作 - 34 -
3.3.1 薄膜製成 - 34 -
3.3.2 黃光微影製程 - 35 -
3.3.3 蝕刻製成 - 37 -
3.4 量測儀器分析 - 39 -
3.4.1 X-ray 晶格繞射儀 - 39 -
3.4.2 EDS成分分析儀 - 40 -
3.4.3 原子力顯微鏡(AFM) - 41 -
3.4.4 電阻-溫度量測系統 - 41 -
3.4.5 SQUID量測系統 - 42 -
3.5鑭鈣錳氧靶材製備 - 44 -
3.6 鑭鈣錳氧/釔鋇銅氧薄膜之製備與特性分析 - 45 -
3.6.1 A樣品-第一次實驗鑭鈣錳氧薄膜 - 45 -
3.6.2 B樣品-第二次實驗鑭鈣錳氧薄膜 - 48 -
3.6.3 釔鋇銅氧薄膜 - 49 -
3.7超導/磁阻感測元件製成 - 51 -
第四章 實驗結果與討論PART 1 (磁性超導混合元件) - 53 -
4.1 LCMO雙晶元件牛軛設計 - 53 -
4.1.1 電性、XRD分析 - 53 -
4.1.2 磁阻分析 - 53 -
4.2 LCMO雙晶元件Washtype設計第一次重複實驗 - 56 -
4.2.1 LCMO薄膜製程與分析 - 56 -
4.2.2 A樣品磁阻分析 - 57 -
4.3 LCMO雙晶元件Washtype設計第二次重複實驗 - 59 -
4.3.1 LCMO薄膜製程與分析 - 59 -
4.2.2 磁阻分析 - 61 -
第五章 LCMO/Bi2Te3異質接面特性之研究 - 64 -
5.1鍗化鉍薄膜製備 - 64 -
5.1.1 XRD分析 - 64 -
5.1.2電性分析 - 64 -
5.2鑭鈣錳氧/鍗化鉍異質結構製程及分析 - 71 -
5.2.1 XRD分析 - 71 -
5.2.2 電性分析 - 72 -
5.2.3磁阻分析 - 77 -
第六章 結論 - 79 -
參考文獻 - 80 -
dc.language.isozh-TW
dc.title鑭鈣錳氧穿隧磁阻元件與碲化鉍/鑭鈣錳氧異質接面特性之研
究
zh_TW
dc.titleCharacteristics of La-Ca-Mn-O Tunneling Magnetoresistance
Devices and Bi2Te3/LCMO Heterogeneous Junctions
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳秋賢(Chiu-Hsien Wu),陳坤麟(Kuen-Lin Chen),陳昭翰(Jau-Han Chen)
dc.subject.keywordYBCO,LCMO,TMR,Bi-crystal,Bi2Te3,zh_TW
dc.relation.page83
dc.identifier.doi10.6342/NTU201803349
dc.rights.note未授權
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved