Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明(Chung-Ming Chen)
dc.contributor.authorYi-Ju Wuen
dc.contributor.author吳怡儒zh_TW
dc.date.accessioned2021-06-08T03:55:52Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1]Nagao, T., Miyazaki, H., Fujiwara, K., Warnakulasuriya, S., Ikeda, N., & Fukano, H. (2000). Oral cancer screening as an integral part of general health screening in Tokoname City, Japan. Journal of medical screening, 7(4), 203-208.
[2]Shah, J. P., & Gil, Z. (2009). Current concepts in management of oral cancer–surgery. Oral oncology, 45(4), 394-401.
[3]O'neill, V. J., & Twelves, C. J. (2002). Oral cancer treatment: developments in chemotherapy and beyond. British journal of cancer, 87(9), 933.
[4]Zaretski, A., Wei, F. C., Lin, C. H., Cheng, M. H., Tsao, C. K., & Wallace, C. G. (2006, May). Anterolateral thigh perforator flaps in head and neck reconstruction. In Seminars in plastic surgery(Vol. 20, No. 2, p. 64). Thieme Medical Publishers.
[5]Chana, J. S., Chang, Y. M., Wei, F. C., Shen, Y. F., Chan, C. P., Lin, H. N., ... & Jeng, S. F. (2004). Segmental mandibulectomy and immediate free fibula osteoseptocutaneous flap reconstruction with endosteal implants: an ideal treatment method for mandibular ameloblastoma. Plastic and reconstructive surgery, 113(1), 80-87.
[6]Hamdi, M., Weiler-Mithoff, E. M., & Webster, M. H. (1999). Deep inferior epigastric perforator flap in breast reconstruction: experience with the first 50 flaps. Plastic and reconstructive surgery, 103(1), 86-95.
[7]Godina, M. (2006). Early microsurgical reconstruction of complex trauma of the extremities. Orthopedic Trauma Directions, 4(05), 29-35.
[8]Daniel, R. K., & Taylor, G. I. (1973). Distant transfer of an island flap by microvascular anastomoses. Plastic and reconstructive surgery, 52(2), 111-117.
[9]Taylor, G. I., & Daniel, R. K. (1975). The anatomy of several free flap donor sites. Plastic and reconstructive surgery, 56(3), 243-253.
[10]Zaretski, A., Wei, F. C., Lin, C. H., Cheng, M. H., Tsao, C. K., & Wallace, C. G. (2006, May). Anterolateral thigh perforator flaps in head and neck reconstruction. In Seminars in plastic surgery (Vol. 20, No. 2, p. 64). Thieme Medical Publishers.
[11]Hamdi, M., Weiler-Mithoff, E. M., & Webster, M. H. (1999). Deep inferior epigastric perforator flap in breast reconstruction: experience with the first 50 flaps. Plastic and reconstructive surgery, 103(1), 86-95.
[12]Chana, J. S., Chang, Y. M., Wei, F. C., Shen, Y. F., Chan, C. P., Lin, H. N., ... & Jeng, S. F. (2004). Segmental mandibulectomy and immediate free fibula osteoseptocutaneous flap reconstruction with endosteal implants: an ideal treatment method for mandibular ameloblastoma. Plastic and reconstructive surgery, 113(1), 80-87.
[13]Godina, M. (2006). Early microsurgical reconstruction of complex trauma of the extremities. Orthopedic Trauma Directions, 4(05), 29-35.
[14]Shaw, W. W. (1983). Microvascular free flaps: the first decade. Clin Plast Surg, 10, 3-20.
[15]Khouri, R. K. (1992). Free flap surgery. The second decade. Clinics in plastic surgery, 19(4), 757-761.
[16]Harashina, T. (1988). Analysis of 200 free flaps. British journal of plastic surgery, 41(1), 33-36.
[17]Soutar, D. S., & McGregor, I. A. (1986). The radial forearm flap in intraoral reconstruction: the experience of 60 consecutive cases. Plastic and reconstructive surgery, 78(1), 1-8.
[18]Schusterman, M. A., Miller, M. J., Reece, G. P., Kroll, S. S., Marchi, M., & Goepfert, H. (1994). A single center's experience with 308 free flaps for repair of head and neck cancer defects. Plastic and reconstructive surgery, 93(3), 472-8.
[19]Hidalgo, D. A., & Jones, C. S. (1990). The role of emergent exploration in free-tissue transfer: a review of 150 consecutive cases. Plastic and reconstructive surgery, 86(3), 492-8.
[20]Kroll, S. S., Schusterman, M. A., Reece, G. P., Miller, M. J., Evans, G. R., Robb, G. L., & Baldwin, B. J. (1996). Timing of pedicle thrombosis and flap loss after free-tissue transfer. Plastic and reconstructive surgery, 98(7), 1230-1233.
[21]Kubo, T., Yano, K., & Hosokawa, K. (2002). Management of flaps with compromised venous outflow in head and neck microsurgical reconstruction. Microsurgery, 22(8), 391-395.
[22]Irons, G. B., & Wood, M. B. (1987). Experience with one hundred consecutive free flaps. Annals of plastic surgery, 18(1), 17-23.
[23]Krag, C. (1985). Experience with transplantation of composite tissues by means of microsurgical vascular anastomoses: II. Late results and comments. Scandinavian journal of plastic and reconstructive surgery, 19(2), 157-173.
[24]Lineaweaver, W. C., & Buncke, H. J. (1986). Complications of free flap transfers. Hand clinics, 2(2), 347-351.
[25]Pohlenz, P., Klatt, J., Schön, G., Blessmann, M., Li, L., & Schmelzle, R. (2012). Microvascular free flaps in head and neck surgery: complications and outcome of 1000 flaps. International journal of oral and maxillofacial surgery, 41(6), 739-743.
[26]Chen, K. T., Mardini, S., Chuang, D. C. C., Lin, C. H., Cheng, M. H., Lin, Y. T., ... & Wei, F. C. (2007). Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plastic and reconstructive surgery, 120(1), 187-195.
[27]Anbar, M. (1990). Recent technological developments in thermology and their impact on clinical applications Biomed. Thermol, 10, 270-276.
[28]Bui, D. T., Cordeiro, P. G., Hu, Q. Y., Disa, J. J., Pusic, A., & Mehrara, B. J. (2007). Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps. Plastic and reconstructive surgery, 119(7), 2092-2100.
[29]Brown, J. S., Devine, J. C., Magennis, P., Sillifant, P., Rogers, S. N., & Vaughan, E. D. (2003). Factors that influence the outcome of salvage in free tissue transfer. British Journal of Oral and Maxillofacial Surgery, 41(1), 16-20.
[30]Panchapakesan, V., Addison, P., Beausang, E., Lipa, J. E., Gilbert, R. W., & Neligan, P. C. (2003). Role of thrombolysis in free-flap salvage. Journal of reconstructive microsurgery, 19(08), 523-530.
[31]Tenorio, X., Mahajan, A. L., Wettstein, R., Harder, Y., Pawlovski, M., & Pittet, B. (2009). Early detection of flap failure using a new thermographic device. Journal of Surgical Research, 151(1), 15-21.
[32]Udesen, A., Løntoft, E., & Kristensen, S. R. (2000). Monitoring of free TRAM flaps with microdialysis. Journal of reconstructive microsurgery, 16(02), 0101-0106.
[33]Wise, J. B., Talmor, M., Hoffman, L. A., & Gayle, L. B. (2000). Postoperative monitoring of microvascular tissue transplants with an implantable Doppler probe. Plastic and reconstructive surgery, 105(6), 2279-2280.
[34]Kayikçioglu, A. (2003). Two practical devices for monitoring temperature. Plastic and reconstructive surgery, 111(5), 1778-1779.
[35]Repež, A., Oroszy, D., & Arnež, Z. M. (2008). Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 61(1), 71-77.
[36]Jallali, N., Ridha, H., & Butler, P. E. (2005). Postoperative monitoring of free flaps in UK plastic surgery units. Microsurgery, 25(6), 469-472.
[37]Wise, J. B., Talmor, M., Hoffman, L. A., & Gayle, L. B. (2000). Postoperative monitoring of microvascular tissue transplants with an implantable Doppler probe. Plastic and reconstructive surgery, 105(6), 2279-2280.
[38]Nyland, T. G., Wallack, S. T., & Wisner, E. R. (2002). Needle‐tract implantation following US‐guided fine‐needle aspiration biopsy of transitional cell carcinoma of the bladder, urethra, and prostate. Veterinary Radiology & Ultrasound, 43(1), 50-53.
[39]Heller, L., Levin, L. S., & Klitzman, B. (2001). Laser Doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases. Plastic and reconstructive surgery, 107(7), 1739-1745.
[40]Kayikçioglu, A. (2003). Two practical devices for monitoring temperature. Plastic and reconstructive surgery, 111(5), 1778-1779.
[41]Repež, A., Oroszy, D., & Arnež, Z. M. (2008). Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 61(1), 71-77.
[42]Merritt, C. R. (1987). Doppler color flow imaging. Journal of clinical ultrasound, 15(9), 591-597.
[43]Repež, A., Oroszy, D., & Arnež, Z. M. (2008). Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 61(1), 71-77.
[44]Udesen, A., Løntoft, E., & Kristensen, S. R. (2000). Monitoring of free TRAM flaps with microdialysis. Journal of reconstructive microsurgery, 16(02), 0101-0106.
[45]Eismann, M. T., Schwartz, C. R., Cederquist, J. N., Hackwell, J. A., & Huppi, R. J. (1996, November). Comparison of infrared imaging hyperspectral sensors for military target detection applications. In Imaging Spectrometry II (Vol. 2819, pp. 91-102). International Society for Optics and Photonics.
[46]Moropoulou, A., Avdelidis, N. P., Koui, M., Aggelopoulos, A., & Karmis, P. (2002). Infrared thermography and ground penetrating radar for airport pavements assessment. Nondestructive Testing And Evaluation, 18(1), 37-42.
[47]Balcerak, R., Jenkins, D. P., & Diakides, N. A. (1996). Uncooled infrared focal plane arrays. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE (Vol. 5, pp. 2077-2078). IEEE.
[48]White, T., Marshall, C., & Butler, N. (1996). Uncooled infrared sensor with digital focal plane array for medical applications. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE (Vol. 5, pp. 2081-2082). IEEE.
[49]Lawson, R. (1956). Implications of surface temperatures in the diagnosis of breast cancer. Canadian Medical Association Journal, 75(4), 309.
[50]Lawson, R. N., & Chughtai, M. S. (1963). Breast cancer and body temperature. Canadian Medical Association Journal, 88(2), 68.
[51]Hackett, M. E. J. (1974). The use of thermography in the assessment of depth of burn and blood supply of flaps, with preliminary reports on its use in Dupuytren's contracture and treatment of varicose ulcers. British journal of plastic surgery, 27(4), 311-317.
[52]Baudet, J., Lemaire, J. M., & Guimberteau, J. C. (1976). Ten free groin flaps. Plastic and reconstructive surgery, 57(5), 577-595.
[53]Kerrigan, C. L., & Daniel, R. K. (1983). Monitoring acute skin-flap failure. Plastic and reconstructive surgery, 71(4), 519-524.
[54]Yamamoto, T., Todokoro, T., & Koshima, I. (2012). Handheld thermography for flap monitoring. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65(12), 1747-1748.
[55]Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal processing, 24(1), 1-10.
[56]Delfosse, N., & Loubaton, P. (1995). Adaptive blind separation of independent sources: a deflation approach. Signal processing, 45(1), 59-83.
[57]Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica united with Acustica, 86(1), 117-128.
[58]Haykin, S., & Chen, Z. (2005). The cocktail party problem. Neural computation, 17(9), 1875-1902.
[59]Lee, T. W. (1998). Independent component analysis. In Independent component analysis (pp. 27-66). Springer, Boston, MA.
[60]Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105-117.
[61]Comon, P. (1994). Independent component analysis, a new concept?. Signal processing, 36(3), 287-314.
[62]Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6), 1129-1159.
[63]Lee, T. W. (1998). Independent component analysis. In Independent component analysis (pp. 27-66). Springer, Boston, MA.
[64]Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3), 626-634.
[65]Luenberger, D. G. (1969). Optimization by vector space methods. John Wiley & Sons.
[66]Karhunen, J., Oja, E., Wang, L., Vigario, R., & Joutsensalo, J. (1997). A class of neural networks for independent component analysis. IEEE Transactions on neural networks, 8(3), 486-504.
[67]Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4-5), 411-430.
[68]Li, H., Wang, B., & Li, L. (2010, October). Research on the infrared and visible power-equipment image fusion for inspection robots. In Applied Robotics for the Power Industry (CARPI), 2010 1st International Conference on (pp. 1-5). IEEE.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21974-
dc.description.abstract目前癌症中發生率與死亡率成長速度最快速的癌症其中之為口腔癌;在口腔癌的治療方面,目前臨床中最常使用的方法是透過外科手術進行病灶的切除,病患在切除病灶後,需要利用病患身體上其他部位的組織來重建其患處區域以保持其美觀性;其中,顯微游離皮瓣手術是多年來可靠又重要重建方法。然而,儘管游離皮瓣重建手術是由富有經驗的顯微手術醫師操刀,仍有少數游離皮瓣會在五至七天內發生血循障礙,且自得知皮瓣發生阻塞到執行再探查的時間間隔越長,其也會增加再次手術的失敗機率,因此如何監控游離皮瓣血液灌流狀況,提早偵測發生血管阻塞時間點,並即時警示醫師執行再探查,或重新手術接合,至關重要!
目前臨床游離皮瓣的監控與照護,主要是透過護理人員定期執行游離皮瓣的常規檢查,但這不僅需要耗費相當龐大的人力資源,同時也會因為護理人員照護經驗的不同而產生判斷上的差異;而其他監控游離皮瓣血管是否阻塞的方法,不但需要較高的成本,而且也無法提供一套非侵入式與非接觸式,甚至是連續的監控系統;因此,在先期研究中,提出利用紅外線具備低成本、非侵入性、非接觸性、無放射性、快速且可反覆成像的等特性,在不接觸游離皮瓣表面的情況下,測量其組織溫度的變化,是一項重要的起步;且透過因素分析演算法能夠有效的移除人體生理之共同的因素,以觀察到真實的溫度變化資訊。但本研究發現如果存在兩個以上會影響溫度變化的獨立因素時,以目前觀察值的數量及組合方式可能不適用因素分析的方法,因為沒有足夠的資料去能夠解讀更為複雜之情況,且若所估計出之共同因素並非所有共同影響之因素的線性組合,而是先有某項因素後出現某項因素,這樣因素分析演算法就無法將其分離乾淨。
因此本研究基於先期研究的理論基礎,希望利用獨立成分分析演算法能夠解析出所觀察訊號之特有訊號,與具備更多的彈性與更多資訊可以解釋所發生之不同現象之資訊的優勢,且這些因素不容易由因素分析演算法來詮釋,希望透過獨立成分分析演算法這項優勢與能力,發展更適用於紅外線熱影像之游離皮瓣術後監測系統之溫度變化偵測演算法。
目前本研究已進行四次的動物實驗以及於臨床收案共二十三位病患,且皆已通過台北榮民總醫院動物照護及使用委員會(IACUC核准編號:2017-181)與臨床試驗委員會(IRB編號:2016-01-006BC)之審核。其中有一位病患發生靜脈血管阻塞的情況,除經因素分析其紅外線熱影像溫度變化的結果,發現游離皮瓣阻塞之皮瓣溫度有明顯下降的現象已外,經獨立成分分析演算法之結果我們可以發現,有兩項獨立因素可能影響著游離皮瓣區域之溫度變化,且其中一項獨立因素發生溫度下降趨勢的時間點早於因素分析之結果,另一項則同於因素分析之結果,且而此現象與護理紀錄比對顯示,其游離皮瓣溫度變化皆早於護理人員之判斷的可能性,但由於目前阻塞案例太少,因此無法做更進一步的驗證與討論,希望在未來能夠有更多資料進行皮瓣阻塞溫度變化的驗證,並發展出一套提供臨床監測皮瓣血管阻塞的輔助監測工具。
zh_TW
dc.description.abstractOne of the most common cancer with the highest mortality rate is Oral cancer. The most frequently adopted approach of curative treatment of oral cancer is by resecting cancer legions and reconstructing the affected regions by unaffected tissues of the patient. Free flap surgery is a reliable reconstruction method operated by many medical professionals. However, circulatory compromises were sometimes observed within five to seven days after surgeries, even if the operations were performed by experienced microvascular surgeons. Furthermore, research shows that that the success rate of surgeries diminishes due to late detection of circulatory compromises. Therefore, monitoring and early detection of circulatory compromises signs are crucial to the free flap surgery.
At present, clinical free flap care and monitoring are performed mainly through scheduled inspections by nursing staff. The caring process is labor-intensive and the success rate of detection varies owing to subjective judgement and experiences of carers. Other available methods of monitoring includes the continuity usage of monitor systems, which are invasive and incur higher cost. It is noticeable that an alternative method of monitoring is imminent.
Therefore, previous scholars suggested infrared imaging as an alternative method to current monitoring for its inexpensive, non-invasive, non-contacting, non-radioactive, real-time, and repeatable features. Through the Factor Analysis algorithm, it could effectively remove the common factors of human physiology and observe the changes of real temperature. However, the method does not apply in more complex situations. If the estimation of common factors is not a linear combination of all factors but one factor occurs after another, the Factor analysis algorithms is unable to segregate the factors. Because if the estimated of the common factor is not a linear combination of all factors, but a certain factor occurs first and then a factor occurs later, then Factors Analysis algorithms can't separate them.
Therefore, based on theoretical basis of prior researches, this study aimed to analyze the unique features of the observed signals by using the Independent Component Analysis algorithms for its flexibility. Plus, the factors could not be easily explained by the Factor Analysis algorithm. Through the advantages and capabilities of the Independent Component Analysis algorithm, the study hope to propouse a temperature variation detection algorithm that is more suitable for the Infrared thermography monitoring system for microvascular free flap after surgery. Out of the four animal experiments and twenty-three cases monitored in the study, only one patient developed venous thrombosis. Through the Factors Analysis algorithm, we found that the temperature of the free flap had significantly decreased. According to the results of the Independent Component Analysis algorithm, we found that there was two independent factors that may affect the temperature of the free flap region. One of the independent factors could detect the drop of the temperature earlier than the result of the factor analysis, and the other is the same as the result of the Factor Analysis. Both of the results showed the potential of early detection in temperature changes comparing to nursing records.
However, due to the limitation of sampling, the study was unable to provide further verifications and discussions. It is hoped that more data will be available in the future to support the aim analytical methods. The goal of this study it to setup a foundation in the development of an auxiliary monitoring tool to monitor free flap pedicel thrombosis after a lesion removal surgery.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:55:52Z (GMT). No. of bitstreams: 1
ntu-107-R05548017-1.pdf: 6621555 bytes, checksum: 1c0c05e46de7eaec674e3a70506f05aa (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1 口腔癌之簡介與治療方法 1
1.2 顯微游離皮瓣手術重建方法 3
1.3 顯微游離皮瓣術後與血管阻塞監控方法 5
1.4 紅外線熱相機應用於血液灌流溫度變化相關研究 7
1.5 先期研究 9
1.6 研究動機與目的 11
第二章 背景知識與文獻探討 13
2.1 先期研究結果之討論 13
2.2 獨立成分分析(INDEPENDENT COMPONENT ANALYSIS, ICA)的原理 15
2.2.1 盲訊號分離(Blind Sources Separation) 15
2.2.2 雞尾酒會問題(Cocktail Party Problem) 16
2.3 獨立成分分析(INDEPENDENT COMPONENT ANALYSIS, ICA)的簡介 18
2.3.1 基本定理 19
2.3.2 基本限制條件 21
第三章 研究材料與方法 22
3.1 影像擷取系統與動物實驗和臨床收案 23
3.1.1 紅外線熱影像擷取系統 24
3.1.1.1 應用於臨床收案之手動追蹤式支架 25
3.1.2 動物實驗方法 27
3.1.3 臨床收案方法 27
3.2 獨立成分分析(INDEPENDENT COMPONENT ANALYSIS, ICA)演算法 29
3.2.1 前處理 31
3.2.1.1 置中化(Centering) 31
3.2.1.2 白化(Whitening) 31
3.2.2 FastICA 演算法 34
3.2.2.1 單觀測值之FastICA 34
3.2.2.2 多觀測值之FastICA 36
3.2.3 Component 數量的選擇 37
3.3 因素分析(FACTOR ANALYSIS, FA)演算法 39
第四章 結果與討論 43
4.1 動物實驗資料 43
4.2 臨床病患資料 43
4.3 獨立成分分析與因素分析之溫度變化偵測結果比較 44
4.3.1 獨立成分之component 數量結果與討論 44
4.3.2 動物實驗之溫度變化偵測結果與討論 45
4.3.3 臨床收案之溫度變化偵測結果與討論 64
4.3.4 獨立成分分析應用於即時偵測之結果與討論 71
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 75
附錄一、動物照護及使用委員會審查通過證明書 80
附錄二、臨床試驗委員會同意書 81
附錄三、臨床試驗委員會持續審查同意書 82
dc.language.isozh-TW
dc.title紅外線熱影像顯微游離皮瓣術後監測系統:基於獨立成分分析法之溫度變化偵測zh_TW
dc.titleInfrared Thermography Monitoring System for Microvascular Free Flap After Surgery: Flap Temperature Variation Detection Based on Independent Components Analysisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭成康(Cherng-Kang Perng),林沛群(Pei-Chun Lin),李佳燕(Chia-Yen Lee)
dc.subject.keyword游離皮瓣,血循障礙,紅外線影像,獨立成分分析演算法,因素分析演算法,溫度變化偵測演算法,zh_TW
dc.subject.keywordfree flaps,pedicel thrombosis,infrared image,Independent components analysis,factor analysis,temperature variation detection algorithm,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201802434
dc.rights.note未授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved