請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林琬琬(Wan-Wan Lin) | |
| dc.contributor.author | Yen-Yu Chang | en |
| dc.contributor.author | 張晏瑜 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:55:27Z | - |
| dc.date.copyright | 2018-10-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | REFERENCES
Abella JV, & Park M (2009). Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab, 296(5), E973-984 Alwan HA, van Zoelen EJ, & van Leeuwen JE (2003). Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem, 278(37), 35781-35790 Anderson JM (1996). Cell signalling: MAGUK magic. Curr Biol, 6(4), 382-384 Bertin J, Wang L, Guo Y (2001). CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem, 276(15), 11877-11882 Burkin HR, Zhao L, & Miller DJ (2004). CASK is in the mammalian sperm head and is processed during epididymal maturation. Mol Reprod Dev, 68(4), 500-506 Chao HW, Hong CJ, Huang TN (2008). SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J Cell Biol, 182(1), 141-155 Choi Y, Kim H, Chung H (2010). Syndecan-2 regulates cell migration in colon cancer cells through Tiam1-mediated Rac activation. Biochem Biophys Res Commun, 391(1), 921-925 Citri A, & Yarden Y (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 7(7), 505-516 da Cunha Santos G, Shepherd FA, & Tsao MS (2011). EGFR mutations and lung cancer. Annu Rev Pathol, 6, 49-69 Damke H, Baba T, van der Bliek AM, & Schmid SL (1995). Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol, 131(1), 69-80 Danciu TE, Adam RM, Naruse K (2003). Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Letters, 536(1-3), 193-197 Dawson JP, Berger MB, Lin CC (2005). Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol, 25(17), 7734-7742 Dela Cruz CS, Tanoue LT, & Matthay RA (2011). Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med, 32(4), 605-644 Demory ML, Boerner JL, Davidson R (2009). Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem, 284(52), 36592-36604 Dimitratos SD, Woods DF, & Bryant PJ (1997). Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev, 63(1), 127-130 Du B, & Shim JS (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7) Erfani P, Tome-Garcia J, Canoll P (2015). EGFR promoter exhibits dynamic histone modifications and binding of ASH2L and P300 in human germinal matrix and gliomas. Epigenetics, 10(6), 496-507 Funke L, Dakoji S, & Bredt DS (2005). Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 74, 219-245 Futter CE (1996). Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. The Journal of Cell Biology, 132(6), 1011-1023 Gao YS, Hubbert CC, & Yao TP (2010). The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem, 285(15), 11219-11226 Good MC, Zalatan JG, & Lim WA (2011). Scaffold proteins: hubs for controlling the flow of cellular information. Science, 332(6030), 680-686 Gridelli C, Maione P, Del Gaizo F (2007). Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist, 12(2), 191-200 Hackett A, Tarpey PS, Licata A (2010). CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet, 18(5), 544-552 Haigler HT, McKanna JA, & Cohen S (1979). Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol, 81(2), 382-395 Han HS, Lim SN, An JY (2012). Detection of EGFR mutation status in lung adenocarcinoma specimens with different proportions of tumor cells using two methods of differential sensitivity. J Thorac Oncol, 7(2), 355-364 Hodge JJ, Mullasseril P, & Griffith LC (2006). Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK. Neuron, 51(3), 327-337 Hsueh YP (2009). Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol, 66(4), 438-443 Hsueh YP, & Sheng M (1999). Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J Neurosci, 19(17), 7415-7425 Hsueh YP, Wang TF, Yang FC, & Sheng M (2000). Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature, 404(6775), 298-302 Huang C, Jacobson K, & Schaller MD (2004). MAP kinases and cell migration. J Cell Sci, 117(Pt 20), 4619-4628 Huang TN, Chang HP, & Hsueh YP (2010). CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem, 112(6), 1562-1573 Illario M, Cavallo AL, Bayer KU (2003). Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation. J Biol Chem, 278(46), 45101-45108 Inamura K, Ninomiya H, Ishikawa Y, & Matsubara O (2010). Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch Pathol Lab Med, 134(1), 66-72 Ivanova S, Gregorc U, Vidergar N (2011). MAGUKs, scaffolding proteins at cell junctions, are substrates of different proteases during apoptosis. Cell Death Dis, 2, e116 Jiang X, & Sorkin A (2003). Epidermal growth factor receptor internalization through clathrin-coated pits requires Cbl RING finger and proline-rich domains but not receptor polyubiquitylation. Traffic, 4(8), 529-543 Johnson AC (1996). Activation of Epidermal Growth Factor Receptor Gene. Johnson AC, Jinno Y, & Merlino GT (1988). Modulation of epidermal growth factor receptor proto-oncogene transcription by a promoter site sensitive to S1 nuclease. Mol Cell Biol, 8(10), 4174-4184 Jura N, Endres NF, Engel K (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell, 137(7), 1293-1307 Kageyama R, Merlino GT, & Pastan I (1988a). Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. J Biol Chem, 263(13), 6329-6336 Kageyama R, Merlino GT, & Pastan I (1988b). A transcription factor active on the epidermal growth factor receptor gene. Proc Natl Acad Sci U S A, 85(14), 5016-5020 Karen Kelly CH (2008). Biological Agents in Non-small Cell Lung Cancer A Review. Kitadai Y, Yamazaki H, Yasui W (1993). GC factor represses transcription of several growth factor/receptor genes and causes growth inhibition of human gastric carcinoma cell lines. Cell Growth Differ, 4(4), 291-296 Kitadai Y, Yasui W, Yokozaki H (1992). The level of a transcription factor Sp1 is correlated with the expression of EGF receptor in human gastric carcinomas. Biochem Biophys Res Commun, 189(3), 1342-1348 LaConte L, & Mukherjee K (2013). Structural constraints and functional divergences in CASK evolution. Biochem Soc Trans, 41(4), 1017-1022 Larissa Lozovatsky NA, Sorbarikor Piawah, & Walther AZ (2009). CASK Deletion in Intestinal Epithelia Causes. Levkowitz G, Waterman H, Zamir E (1998). c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev, 12(23), 3663-3674 Malik BR, & Hodge JJ (2014). CASK and CaMKII function in Drosophila memory. Front Neurosci, 8, 178 Marquez-Rosado L, Singh D, Rincon-Arano H (2012). CASK (LIN2) interacts with Cx43 in wounded skin and their coexpression affects cell migration. J Cell Sci, 125(Pt 3), 695-702 Maximov A, & Bezprozvanny I (2002). Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci, 22(16), 6939-6952 Minari R, Bordi P, & Tiseo M (2016). Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance. Transl Lung Cancer Res, 5(6), 695-708 Morgillo F, Della Corte CM, Fasano M, & Ciardiello F (2016). Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 1(3), e000060 Mukherjee K, Sharma M, Urlaub H (2008). CASK Functions as a Mg2+-independent neurexin kinase. Cell, 133(2), 328-339 Mukherjee K, Slawson JB, Christmann BL, & Griffith LC (2014). Neuron-specific protein interactions of Drosophila CASK-beta are revealed by mass spectrometry. Front Mol Neurosci, 7, 58 Mytilinaiou M, Nikitovic D, Berdiaki A (2017). Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life, 69(11), 824-833 Nickerson DP, Russell MR, & Odorizzi G (2007). A concentric circle model of multivesicular body cargo sorting. EMBO Rep, 8(7), 644-650 Nishi H, Nishi KH, & Johnson AC (2002). Early Growth Response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res, 62(3), 827-834 Normanno N, Bianco C, Strizzi L (2005). The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets, 6(3), 243-257 Nyati MK, Morgan MA, Feng FY, & Lawrence TS (2006). Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer, 6(11), 876-885 Ojeh N, Pekovic V, Jahoda C, & Maatta A (2008). The MAGUK-family protein CASK is targeted to nuclei of the basal epidermis and controls keratinocyte proliferation. J Cell Sci, 121(Pt 16), 2705-2717 Okamoto I, Morita S, Tashiro N (2018). Real world treatment and outcomes in EGFR mutation-positive non-small cell lung cancer: Long-term follow-up of a large patient cohort. Lung Cancer, 117, 14-19 Peng B, Zhu H, Ma L (2015). AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion. Endocrinology, 156(6), 2269-2277 Pikor LA, Ramnarine VR, Lam S, & Lam WL (2013). Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer, 82(2), 179-189 Pore N, Jiang Z, Gupta A (2006). EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res, 66(6), 3197-3204 Qi J, Su Y, Sun R (2005). CASK inhibits ECV304 cell growth and interacts with Id1. Biochem Biophys Res Commun, 328(2), 517-521 Qian Y, Qiu M, Wu Q (2014). Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep, 4, 7490 Ramnarain DB, Paulmurugan R, Park S (2008). RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ, 15(2), 344-353 Ray D, Ahsan A, Helman A (2011). Regulation of EGFR Protein Stability by the HECT-type Ubiquitin Ligase SMURF2. Neoplasia, 13(7), 570-IN571 Riihimaki M, Hemminki A, Fallah M (2014). Metastatic sites and survival in lung cancer. Lung Cancer, 86(1), 78-84 Roskoski R, Jr. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res, 79, 34-74 Samuels BA, Hsueh YP, Shu T (2007). Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron, 56(5), 823-837 Sanchez-Gonzalez P, Jellali K, & Villalobo A (2010). Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J, 277(2), 327-342 Scagliotti GV, Selvaggi G, Novello S, & Hirsch FR (2004). The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res, 10(12 Pt 2), 4227s-4232s Schmitt JM, Wayman GA, Nozaki N, & Soderling TR (2004). Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem, 279(23), 24064-24072 Shostak K, & Chariot A (2015). EGFR and NF-kappaB: partners in cancer. Trends Mol Med, 21(6), 385-393 Singh B, Carpenter G, & Coffey RJ (2016). EGF receptor ligands: recent advances. F1000Res, 5 Singh B, & Coffey RJ (2014). Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol, 76, 275-300 Socinski MA, Obasaju C, Gandara D (2016). Clinicopathologic Features of Advanced Squamous NSCLC. J Thorac Oncol, 11(9), 1411-1422 Sorkin A, & Duex JE (2010). Quantitative analysis of endocytosis and turnover of epidermal growth factor (EGF) and EGF receptor. Curr Protoc Cell Biol, Chapter 15, Unit 15 14 Srivastava S, McMillan R, Willis J (2016). X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun, 4, 30 Stevenson D, Laverty HG, Wenwieser S, Douglas M, & Wilson JB (2000). Mapping and expression analysis of the human CASK gene. Mamm Genome, 11(10), 934-937 Subramanian J, & Govindan R (2007). Lung cancer in never smokers: a review. J Clin Oncol, 25(5), 561-570 Sudhir PR, Hsu CL, Wang MJ (2011). Phosphoproteomics identifies oncogenic Ras signaling targets and their involvement in lung adenocarcinomas. PLoS One, 6(5), e20199 Sun Q (2014). Ubiquitin-mediated degradation via UPS and lysosome. Sun R, Su Y, Zhao X (2009). Human calcium/calmodulin-dependent serine protein kinase regulates the expression of p21 via the E2A transcription factor. Biochem J, 419(2), 457-466 Sun S, Schiller JH, & Gazdar AF (2007). Lung cancer in never smokers--a different disease. Nat Rev Cancer, 7(10), 778-790 Susan M. Kaech CWW, and Stuart K. Kim (1998a). The LIN-2LIN-7LIN-10 Complex Mediates Basolateral Membrane Localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells. Tanizaki J, Okamoto I, Okabe T (2012). Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin Cancer Res, 18(22), 6219-6226 Tas F, Ciftci R, Kilic L, & Karabulut S (2013). Age is a prognostic factor affecting survival in lung cancer patients. Oncol Lett, 6(5), 1507-1513 Ting-Fang Che, Yi-Ying Wu, Yu-Ju Chen (2015). Mitochondrial translocation of EGFR regulates mitochondria. Toh CK, Gao F, Lim WT (2006). Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol, 24(15), 2245-2251 Tomasello C, Baldessari C, Napolitano M (2018). Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives. Crit Rev Oncol Hematol, 123, 149-161 Tsang KH, Lai SK, Li Q (2014). The nucleosome assembly protein TSPYL2 regulates the expression of NMDA receptor subunits GluN2A and GluN2B. Sci Rep, 4, 3654 Udart M, Utikal J, Krähn GM, & Peter RU (2001). Chromosome 7 Aneusomy. A Marker for Metastatic Melanoma? Neoplasia, 3(3), 245-254 Vo N, & Goodman RH (2001). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 276(17), 13505-13508 Wang GS, Hong CJ, Yen TY (2004). Transcriptional modification by a CASK-interacting nucleosome assembly protein. Neuron, 42(1), 113-128 Wang TF, Ding CN, Wang GS (2004). Identification of Tbr-1/CASK complex target genes in neurons. J Neurochem, 91(6), 1483-1492 Wang Y, Pennock S, Chen X, & Wang Z (2002). Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol, 22(20), 7279-7290 Wei JL, Fu ZX, Fang M (2014). High expression of CASK correlates with progression and poor prognosis of colorectal cancer. Tumour Biol, 35(9), 9185-9194 Wilson KJ, Gilmore JL, Foley J, Lemmon MA, & Riese DJ, 2nd. (2009). Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther, 122(1), 1-8 Xiaoying Zhou, G. X., Chengqiang, Yin,Wujuan Jin, and Guoxin Zhang. (2014). Down-regulation of miR-203 induced by Helicobacter pylori. Xu K, & Shu HK (2007). EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res, 67(13), 6121-6129 Xu YH, Richert N, Ito S, Merlino GT, & Pastan I (1984). Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci U S A, 81(23), 7308-7312 Yusein-Myashkova S, Stoykov I, Gospodinov A, Ugrinova I, & Pasheva E (2016). The repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level and the p53 status. J Biochem, 160(1), 37-47 Zhang L, Wang Y, Zhang B, Zhang H, Zhou M, Wei M (2017). Claudin-3 expression increases the malignant potential of lung adenocarcinoma cells: role of epidermal growth factor receptor activation. Oncotarget, 8(14), 23033-23047 Zhu J, Shang Y, & Zhang M (2016). Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci, 17(4), 209-223 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21966 | - |
| dc.description.abstract | CASK 屬於一種骨架蛋白,並且已知在調控腦神經元的發育及功能中,扮演關鍵性的角色。最近的研究揭示CASK在其他器官和癌細胞的表達,例如結腸癌、膀胱癌和幽門螺桿菌相關的胃癌,而CASK在這些細胞中的調控大多與細胞增殖和移行有關。除此之外,在秀麗隱桿線蟲的外陰前體細胞,CASK參與EGFR定位的調節。然而,人們對於CASK的作用,以及其與EGFR的關係尚不了解。在此研究中,我們使用轉移性NSCLC細胞株H1299,發現將CASK基因靜默之後,雖然不會改變細胞的增殖和存活率,但會增加EGFR mRNA的表現量,不論細胞是在含有血清或無血清培養基中。此外,CASK的靜默會增加細胞表面EGFR的表現量。值得注意的是,EGF刺激可造成EGFR在3到6小時內的調降作用,而此作用在靜默CASK的細胞中卻明顯的被延遲,但靜默CASK並不影響膜上EGFR在受到EGF刺激1小時內,產生快速內吞至近核區之作用。靜默CASK除了增加EGFR mRNA 的表現量,還會延長EGFR蛋白質的安定性。我們利用共軛焦顯微鏡及免疫沉澱法,證明CASK和EGFR之間有共定位及結合作用。此外,靜默CASK會增加EGF刺激造成的ERK及Akt之磷酸化,亦會增加H1299細胞之移行能力,而此作用和ERK的活化有關,且和EGF的作用沒有加成性。雖然CASK和EGFR都位於粒線體,但靜默CASK並不會影響粒腺體的有氧呼吸作用。我們的結果指出在H1299細胞,CASK是具多面向調控EGFR的一個新的分子。CASK為EGFR的結合蛋白,會降低EGFR的蛋白質安定性和基因表現量,並且抑制細胞移行,但在A549細胞靜默CASK並不會造成細胞移行之改變。總的來說,我們的研究結果提供對CASK在NSCLC中與EGFR有關之功能的新見解,未來仍需要更多的研究來達成對於CASK的功能及分子作用機轉之完整的了解。 | zh_TW |
| dc.description.abstract | Calcium/calmodulin-dependent serine protein kinase (CASK) is a scaffold protein, which has been known to play crucial roles in the regulation of neuron development. Recent studies revealed that CASK is also expressed in other tissues and cancer cells. The role of CASK in these cells is mainly involved in the regulation of cell proliferation and migration. Moreover, CASK has been demonstrated to regulate EGFR localization in the vulval precursor cells of C. elegans. However, it is still poorly understood regarding the role of CASK and its relationship with EGFR in cancer cells. In this study, we primarily used metastatic NSCLC cell line H1299 and found that silencing CASK did not alter cell proliferation and viability. Yet, it increased basal level of EGFR mRNA in cells cultured in either complete medium or serum-free medium. Moreover, silencing CASK increased total EGFR protein and its expression in the plasma membrane. Of note, EGF-induced down-regulation of EGFR within 3-12 h was attenuated in CASK knockdown cells, while EGFR activation was more prolonged within 3-6 h. Nevertheless, silencing CASK did not alter the rapid internalization of surface EGFR nor the trafficking of EGFR to peri-nuclear sites induced by EGF within 1 h. Besides the increased EGFR mRNA, silencing CASK also prolonged the stability of EGFR protein. Studies using confocal microscopy and immunoprecipitation revealed the co-localization and interaction between CASK and EGFR, respectively. In addition, silencing CASK enhanced EGF-elicited ERK and Akt activities, and promoted the migration of H1299 cells which was dependent on ERK and was non-additive to EGF. Although both CASK and EGFR are located in mitochondria, silencing CASK did not alter mitochondrial respiration. All these results suggest that CASK is a novel molecule to regulate EGFR via multifaceted mechanisms in H1299 cells. CASK is a binding protein of EGFR, which can reduce EGFR protein stability and EGFR gene expression, and inhibit cell migration. In contrast to the findings in H1299 cells, silencing CASK failed to change cell migration in A549 NSCLC cell line. In conclusion, our findings provide a new insight into the EGFR-associated actions of CASK in NSCLC and further study is needed to have a full understanding on CASK function and underlying molecular mechanisms in NSCLC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:55:27Z (GMT). No. of bitstreams: 1 ntu-107-R05443004-1.pdf: 3220448 bytes, checksum: ef2bcb066e63f9f4dc6ecdbc485ed963 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 ………………………………………………………………..... I
誌謝…………………………………………………………………………………...II Abbreviations …………………………………………………………………..…..III Abstract …………………………………………………………….………………..V 中文摘要 …………………………………………………………………………. VII Introduction ………………………………………………………………………… 1 Materials and Methods …………………………………………………………… 15 Specific Aims ……………………………………………………………………… 28 Results ……………………………………………………………………………... 29 Discussions ………………………………………………………………………… 40 Figures ……………………………………………………………………………... 47 References …………………………………………………………………………. 67 | |
| dc.language.iso | en | |
| dc.title | 探討CASK在非小細胞肺癌中對表皮生長因子受器作用之調節 | zh_TW |
| dc.title | The role of CASK in the modulation of EGFR action in non-small cell lung cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝世良,蔡丰喬,吳青錫 | |
| dc.subject.keyword | 非小細胞肺癌,表皮生長因子受器,移行, | zh_TW |
| dc.subject.keyword | NSCLC,CASK,EGFR,Migration, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201803370 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
