Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21957
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊申語(Sen-Yeu Yang)
dc.contributor.authorWei-Cheng Hungen
dc.contributor.author洪瑋晟zh_TW
dc.date.accessioned2021-06-08T03:55:00Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., vol. 16, no. 6, pp. 3926–3928, Nov. 1998.
[2] P. Xie et al., “Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers,” Surf. Coat. Technol., vol. 258, no. Supplement C, pp. 174–180, Nov. 2014.
[3] M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng., vol. 34, no. 3, pp. 321–339, Dec. 1997.
[4] K. Seunarine, N. Gadegaard, M. O. Riehle, and C. D. W. Wilkinson, “Optical heating for short hot embossing cycle times,” Microelectron. Eng., vol. 83, no. 4–9, pp. 859–863, 2006.
[5] Q. Chen, L. Zhang, and G. Chen, “Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips,” RSC Adv., vol. 4, no. 99, pp. 56440–56444, Oct. 2014.
[6] M. Ehrhardt, P. Lorenz, F. Frost, and K. Zimmer, “Laser Embossing of Micro-and Submicrometer Surface Structures in Copper,” Phys. Procedia, vol. 39, pp. 735–742, 2012.
[7] S.-J. Liu, Y.-C. Huang, S.-Y. Yang, and K.-H. Hsieh, “Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing,” Opt. Laser Technol., vol. 42, no. 5, pp. 794–798, 2010.
[8] J.-C. Hung, Y.-P. Tsai, and C. Hung, “Development of a new apparatus for ultrasonic vibration-assisted glass hot embossing process,” Precis. Eng., vol. 37, no. 1, pp. 222–227, 2013.
[9] V. Rudnev, D. Loveless, R. L. Cook, and M. Black, Handbook of Induction Heating. CRC Press, 2002.
[10] S.-C. Chen, P. S. Minh, J.-A. Chang, S.-W. Huang, and C.-H. Huang, “Mold temperature control using high-frequency proximity effect induced heating,” Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 216–223, 2012.
[11] H.-L. Lin, S.-C. Chen, M.-C. Jeng, P. S. Minh, J.-A. Chang, and J.-R. Hwang, “Induction heating with the ring effect for injection molding plates,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 514–522, 2012.
[12] M.-S. Huang and N.-S. Tai, “Experimental rapid surface heating by induction for micro-injection molding of light-guided plates,” J. Appl. Polym. Sci., vol. 113, no. 2, pp. 1345–1354, Jul. 2009.
[13] S.-K. Hong, Y.-M. Heo, and J. Kang, “Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus,” in 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008, 2008, pp. 911–915.
[14] J. Yanagimoto and K. Ikeuchi, “Sheet forming process of carbon fiber reinforced plastics for lightweight parts,” CIRP Ann. - Manuf. Technol., vol. 61, no. 1, pp. 247–250, 2012.
[15] A. Rochman, A. Frick, and P. Martin, “An alternative method for processing high viscosity polymers. I. Development and feasibility study,” Polym. Eng. Sci., vol. 52, no. 10, pp. 2114–2121, Oct. 2012.
[16] T. J. Ahmed, D. Stavrov, H. E. N. Bersee, and A. Beukers, “Induction welding of thermoplastic composites—an overview,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 10, pp. 1638–1651, Oct. 2006.
[17] 蔡宗鴻, “感應加熱技術輔助微結構熱壓印成形之研究,” 國立高雄第一科技大學碩士論文, 高雄市, 2013.
[18] M.-S. Huang and Y.-L. Huang, “Effect of multi-layered induction coils on efficiency and uniformity of surface heating,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2414–2423, May 2010.
[19] S.-C. Chen, W.-R. Jong, Y.-J. Chang, J.-A. Chang, and J.-C. Cin, “Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology,” J. Micromechanics Microengineering, vol. 16, pp. 1783–1791, Sep. 2006.
[20] E. Roland, P. Damien, F. José, and H. Rémi, “3D inductive phenomena modeling,” Proceedings of the COMSOL Users Conference, 2006.
[21] R. Bartolini, W. Hannan, D. Karlsons, and M. Lurie, “Embossed Hologram Motion Pictures for Television Playback,” Appl. Opt., vol. 9, no. 10, p. 2283, Oct. 1970.
[22] T. Mäkelä, T. Haatainen, P. Majander, J. Ahopelto, and V. Lambertini, “Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Film,” Jpn. J. Appl. Phys., vol. 47, no. 6, pp. 5142–5144, Jun. 2008.
[23] S. H. Ahn and L. J. Guo, “Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting,” ACS Nano, vol. 3, no. 8, pp. 2304–2310, Aug. 2009.
[24] “Roll-to-Roll 連續式微奈米壓印技術:材料世界網,” 材料世界網. [Online]. Available: http://www.materialsnet.com.tw/DocView.aspx?id=8614. [Accessed: 21-May-2018].
[25] 林司牧, “必歐-沙伐定律 | 科學Online – 科技部高瞻自然科學教學資源平台.” [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=48077. [Accessed: 12-Jan-2017].
[26] P. Robert, Electrical and Magnetic Properties of Materials. Artech House Publishers, 1988.
[27] S. L. Semiatin, Elements of Induction Heating: Design, Control, and Applications. ASM International, 1988.
[28] 王尊信, “磁滯曲線,” 科學online, 23-Jun-2011. .
[29] 蘇卓盛, “應用於感應加熱的負載並聯共振電流型反流器設計與研製,” 中原大學碩士論文, 桃園縣, 2003.
[30] 沈文揚, “外周包覆式磁場感應加熱應用於模具快速加熱之研究,” 中原大學碩士論文, 桃園縣, 2010.
[31] Christian Wolff, “Skin-Effect.” [Online]. Available: http://www.radartutorial.eu/03.linetheory/tl07.en.html. [Accessed: 13-Jan-2017].
[32] 徐智楓, “合金化爐高週波感應加熱器特性分析與模擬,” 國立高雄應用科技大學碩士論文, 高雄市, 2011.
[33] G. E. Totten, K. Funatani, and L. Xie, Handbook of Metallurgical Process Design. CRC Press, 2004.
[34] S.-C. Nian, M.-S. Huang, and T.-H. Tsai, “Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method,” Int. Commun. Heat Mass Transf., vol. 50, pp. 52–60, Jan. 2014.
[35] F. W. Curtis, High-Frequency Induction Heating, 2nd edition. McGraw-Hill Book Company, 1950.
[36] L. Jakubovičová, G. Andrej, K. Peter, and S. Milan, “Optimization of the Induction Heating Process in Order to Achieve Uniform Surface Temperature,” Procedia Eng., vol. 136, pp. 125–131, Spring 2016.
[37] 施養旻, “高週波感應快速加熱與氣體均勻施壓應用於壓印複製雙面微結構製程開發,” 台灣大學, 2016.
[38] S.-C. Nian, M.-S. Huang, and T.-H. Tsai, “Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method,” Int. Commun. Heat Mass Transf., vol. 50, no. Supplement C, pp. 52–60, Jan. 2014.
[39] S. Lan et al., “A parameter study on the micro hot-embossing process of glassy polymer for pattern replication,” Microelectron. Eng., vol. 86, no. 12, pp. 2369–2374, Dec. 2009.
[40] J. Wang, P. Yi, Y. Deng, L. Peng, X. Lai, and J. Ni, “Recovery behavior of thermoplastic polymers in micro hot embossing process,” J. Mater. Process. Technol., vol. 243, no. Supplement C, pp. 205–216, May 2017.
[41] S.-C. Nian, T.-H. Tsai, and M.-S. Huang, “Novel inductive hot embossing for increasing micromolding efficiency,” Int. Commun. Heat Mass Transf., vol. 70, pp. 38–46, Jan. 2016.
[42] C. G. Gogos and Z. Tadmor, “Principles of Polymer Processing,” p. 982
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21957-
dc.description.abstract微熱壓成型技術具有成本低廉、高轉寫率等優點,其中最主要的缺點是壓力不均勻、壓印面積受限制和升、降溫耗時,由於傳統熱壓機所使用的加壓機構為板對板加壓機構,此壓印方式易受到壓板表面粗糙度及壓板平行度等因素影響,造成壓力分佈不均勻且面積受限;壓板加熱與冷卻,需要整塊熱盤升、降溫,導致製程耗時且耗費能源。
本研究使用軟滾輪施壓,使壓力均勻且擴大壓印面積;並使用單面式感應加熱技術,使升溫快速,開發移動式感應加熱應用於滾輪熱壓印製程。本研究開發感應加熱於移動平台上,使加熱面積不受線圈長度限制,達到更大面積的快速加熱。
首先利用COMSOL分析軟體,模擬單面式線圈對鎳模具感應加熱的表面升溫,觀察在不同線圈幾何對於鎳模具的加熱趨勢。並以實驗驗證在相同的進給速率164 mm/min下,藉由調整功率大小和擺放磁場集中器,可提升整體溫度均勻性,移動式感應加熱可使面積100×100 mm2的鎳模具溫度控制小於20℃。為避免基材與模具在滾壓後變型,本實驗開發真空吸附平台,利用矽膠板將基材與模具吸附在平台之上,不易產生變型。也進一步以風冷強制對流散熱,解決降溫耗時的問題,開發出快速大面積升降溫且施壓均勻的熱滾輪壓印設備。
本研究設計移動式感應加熱應用於滾輪熱壓印V型溝槽微、微透鏡陣列結構於長寬厚100×100×0.1 mm3的PC基材上,轉寫率皆可達96%以上,生產週期時間約2 min。藉由光通量量測證實V型溝槽成品具良好光學應用,證實移動式感應加熱結合滾輪壓印複製微結構製程可應用於高分子光學元件之製備與可行性。
zh_TW
dc.description.abstractRecently, induction heating technology has been widely used to increase the heating efficiency in injection mold and hot embossing process. However, how to enlarge the heating area limited by the characteristic of induction coil and the power of induction heater is a great challenge. In this study, moving induction heating with roll-to-plate hot embossing is proposed and demonstrated.
First, a commercial simulation software, COMSOL Multiphysics, was used to simulate the temperature of the nickel mold after heating. The heating trend of the nickel mold in different coil geometries was analyzed. The result shows that the single layer frame coil has the better heating effect. Adjusting power and placing ferrites at different zones on the coil to effectively improve temperature uniformity at the same feed rate 164 mm/min were confirmed. It will enable to control the temperature differential of 100×100 mm2 nickel molds less than 20°C. In order to avoid substrate and mold deformation after rolling. A vacuum absorbing was implemented on platform, on which the substrate and mold was placed. The cooling system employed to increase cooling efficiency.
In this study, the moving induction heating system and the roll-to-plate of hot embossing facility were combined to realize a high heating rate, large area and uniform pressure in process. The periodic V-cut structures can be replicated on PC substrate by using this process. Replication results indicated that replication rates were higher than 96% at 190°C and 5 kgf/cm2, whereas the cycle time was about 2 min. The optical measurement showed that the illuminance was enhanced 39% by V-cut film. The study proves the potential of this moving induction heating and roller embossing for fast fabrication of microstructure onto polymeric substrate.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:55:00Z (GMT). No. of bitstreams: 1
ntu-107-R05522721-1.pdf: 9777837 bytes, checksum: 5c5f901a8723eff7e0d258b2036b5020 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xvii
第 1 章 導論 1
1.1 前言 1
1.2 傳統微熱壓成型 3
1.3 滾輪壓印成型技術 5
1.4 快速加熱技術 7
1.5 研究動機與目的 8
1.5.1 研究動機 8
1.5.2 研究目的 8
1.6 論文內容與架構 9
第 2 章 文獻回顧 10
2.1 壓印成型技術 10
2.1.1 紅外線加熱技術 10
2.1.2 雷射壓印成型技術 12
2.1.3 超音波震動熱壓成型技術 13
2.1.4 高週波感應加熱技術 14
2.1.5 滾輪應用於熱壓成型微結構技術 22
2.2 感應加熱的理論基礎 25
2.2.1 電磁感應 25
2.2.2 焦耳定律、歐姆定律與電功率 28
2.2.3 磁滯損失與渦流損 29
2.2.4 集膚效應 31
2.2.5 鄰近效應 34
2.2.6 末端效應與邊界效應 35
2.2.7 感應加熱的線圈設計 37
第 3 章 移動式感應加熱應用於滾對板製程規劃 39
3.1 研究架構 39
3.2 感應加熱氣輔熱壓步驟流程 42
3.3 感應快速加熱滾壓機構設計與設備 44
3.3.1 高週波線圈 44
3.3.2 真空吸附腔體 45
3.3.3 滾壓機台架構 50
3.3.4 冷卻系統 57
3.3.5 高週波感應產生器模組 59
3.4 實驗材料與量測儀器 61
3.4.1 模具與壓印材料 61
3.4.2 雲母板絕熱材料 62
3.4.3 壓力量測設備 64
3.4.4 熱電偶溫度資料擷取器 65
3.4.5 3D雷射共焦顯微鏡 66
3.4.6 紅外線熱顯像儀 67
3.4.7 便攜式明度感測器 69
3.4.8 表面粗度量測儀 70
第 4 章 感應加熱線圈設計及加熱均勻性分析 71
4.1 感應加熱模擬分析與線圈設計 71
4.1.1 COMSOL感應加熱模擬與線圈設計建置 71
4.1.2 模擬結果分析 74
4.1.3 最佳參數成果驗證 78
4.2 溫度量測與模具設置 80
4.2.1 溫度量測設置 80
4.2.2 正、反面模具升溫趨勢量測 81
4.3 壓印溫度控制 82
4.3.1 功率與升溫速率關係 82
4.3.2 功率調整提升溫度均勻性 84
4.3.3 使用磁場集中器對升溫速率影響 86
4.3.4 使用磁場集中器提升溫度均勻性 89
4.3.5 溫度均勻性控制 91
4.3.6 實驗壓印溫度設置 93
4.4 本章結論 99
第 5 章 移動式感應加熱應用於滾輪壓印 100
5.1 滾壓製程壓力均勻性探討 100
5.2 微米結構壓印探討 104
5.2.1 壓印實驗參數設置 104
5.2.2 微透鏡陣列 105
5.2.3 V型溝槽 111
5.3 本章結論 122
第 6 章 結論與未來展望 123
6.1 結論 123
6.2 未來展望 124
參考文獻 125
附錄A 微陣列透鏡雷射共軛焦量測圖 129
附錄B V型溝槽成品九點表面輪廓圖 132
dc.language.isozh-TW
dc.title移動式感應加熱於滾輪熱壓大面積微結構之應用zh_TW
dc.titleReplication of Large-area Microstructures with Moving
Induction Heating and Roller Embossing
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張致遠(Chih-Yuan Chang),粘世智(Shih-Chih Nian),韓麗龍(Lee-Long Han)
dc.subject.keyword熱壓印成型,感應加熱,滾對板,大面積,微結構,zh_TW
dc.subject.keywordHot embossing,Induction heating,Roll-to-plate(R2P),Large area,Microstructure,en
dc.relation.page143
dc.identifier.doi10.6342/NTU201803449
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved