請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21953
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李國譚(Kuo-tan Li) | |
dc.contributor.author | MASAFUMI OMORI | en |
dc.contributor.author | 大森真史 | zh_TW |
dc.date.accessioned | 2021-06-08T03:54:48Z | - |
dc.date.copyright | 2021-04-07 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2021-03-10 | |
dc.identifier.citation | Araki, T. 2001. Transition from vegetative to reproductive phase. Current Opinion in Plant Biology 4(1):63¬68. Aruna, M., P. Ozias-Akins, M.E. Austin, and G. Kochert. 1993. Genetic relatedness among rabbiteye blueberry (Vaccinium ashei) cultivars determined by DNA amplification using single primers of arbitrary sequence. Genome 36:971–977. Ballington, J.R., W.E. Ballinger, C.M. Mainland, W.H. Swallow, and E.P. Maness. 1984. Ripening period of Vaccinium species in southeastern North Carolina. J. Am. Soc. Hort. Sci. 109:392–396. Bailey, J.S. 1938. The pollination of the cultivated blueberry. Proc. Amer. Soc. Hot. Sci. 35:71–72. Bañados, M.P. and B. Strik. 2006. Manipulation of the annual growth cycle of blueberry using photoperiod. Acta Hort. 715:65–72. Benjamin, F.E. and R. Winfree. 2014. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environmental entomology 43(6):1574–1583. Cheon, K., A. Nakatsuka, K. Tasaki, and N. Kobayashi. 2012.Seasonal changes in the expression pattern of flowering-related genes in evergreen azalea ‘Oomurasaki’ (Rhododendron×pulchrum). Sci.Hort.134:176–184. Cheng, C.C. 2020. Study of morphogenesis and phenology of apical flowering blueberries. National Taiwan University master thesis, Taipei, Taiwan. Coville, F.V. 1921. Directions for blueberry culture. USDA Bul. 974. Darnell, R.L. 1991. Photoperiod, carbon partitioning and reproductive development in rabbiteye blueberry. J. Amer. Soc. Hort. Sci. 116:856–860. Darnell, R.L., and J.G. Williamson. 1996. Feasibility of blueberry production in warm climates. Acta Hortic. 446:251–256 Dogterom, M.H., M.L. Winston, and A. Mukai. 2000. Effect of pollen load size and source (self, outcross) on seed and fruit production in highbush blueberry cv, ‘Bluecrop’ (Vaccinium corymbosum; Ericaceae). American Journal of Botany. 87:1584–1591. Ebihara, S. 2019 The effect of cross combination on seed formation and fruit quality in highbush blueberry. Kyoto University master thesis, Kyoto, Japan. Eck, P. 1988. Blueberry science. Rutgers University Press. Ehlenfeldt, M.K. and M.R. Hall. 1996. Metrical analysis of a putative source for semi-seedlessness in rabbiteye blueberry, Vaccinium ashei Reade. HortScience 31:272–274. Ehlenfeldt, M.K. 2001. Self- and cross-fertility in recently released highbush blueberry cultivars. HortScience 36:133–135. Ehlenfeldt, M.K. and R.L. Prior. 2001 Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem. 49:2222–2227. Ehlenfeldt, M. and S. Stringer. 2018. Investigations of parthenocarpy in rabbiteye blueberry. HortScience 72:2–11. Food and Agricultural Organization, United Nations. 2019a. Area harvested of blueberries. http://www.fao.org/faostat/en/#data//QC. Food and Agricultural Organization, United Nations. 2019b. Yield of blueberries. http://www.fao.org/faostat/en/#data//QC. Garvey, E.J. and P.M. Lyrene. 1987. Self incompatibility in 19 native blueberry selections. Journal of the American Society for Horticultural Science 112:856–858. Hancock, J.F. and A.D. Draper. 1989. Blueberry culture in North America. HortScience 24:551–556. Harrison, R.E., J.J. Luby, and P.D. Ascher. 1994. Pollen source affects yield components and reproductive fertility of four half-high blueberry cultivars. J. Amer. Soc. Hort. Sci. 119:84–89. Hassidim, M., Y. Harir, E. Yakir, I. Kron, and R. M. Green. 2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta. 230:481–491. Hellman, E.W. and J.N. Moore. 1983. Effect of genetic relationship to pollinizer on fruit, seed, and seedling parameters in highbush and rabbiteye blueberries. J. Amer. Soc. Hort. Sci. 108:401–405. Huang, N., W. Jane, J. Chen and T. Yu. 2012. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant J. 72:175–184. Imaizumi, T., T.F. Schultz, F.G. Harmon, L.A. Ho, and S.A. Kay. 2005. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297 Kobashi, K., S. Sugaya, M. Fukushima, and S. Iwahori. 2000. Sugar accumulation in highbush blueberry fruit as affected by artificial pollination with different pollen sources in relation to seed number, invertase activities and ABA content. In VII International Symposium on Vaccinium Culture 574:47–51. Krebs, S.L. and J.F. Hancock. 1990. Early-acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L. Theoretical and Applied Genetics 79(6):825–832. Li, K.-T. 2009. BLUE FORMOSA – a blueberry initiative program in Taiwan. HortScience 44:1122. Luby, J.J., J.R. Ballington, A.D. Draper, K. Pliszka, and M. E. Austin. 1991. Blueberries and cranberries (Vaccinium). Acta Hortic. 290: 393–458 Lyrene, P.M. 1981. Recurrent selection in breeding rabbiteye blueberries (Vaccinium ashei Reade). Euphytica 30:505–511. MacKenzie, K.E. 1997. Pollination requirements of three highbush blueberry (Vaccinium corymbosum L.) cultivars. J. Amer. Soc. Hort. Sci. 122:891–896. Mainland, C.M. and P. Eck. 1969. Fruiting response of the highbush blueberry to gibberellic acid under field conditions. J. Amer. Soc. Hort. Sci. 94:21–23. Matsuzaki, R. 2018 Evaluation of characteristics of continuous flowering blueberry ‘Blue muffin’ for construction of off-season cropping system. Kyoto University master thesis, Kyoto, Japan. Meader, E.M. and G.M. Darrow. 1944. Pollination of the rabbiteye blueberry and related species. Proc. Am. Soc. Hort. Sci. 45:267–274. Pescie, M., M. Lovisolo, A. De Magistris, B. Strik, and C. López. 2011. Flower bud initiation in southern highbush blueberry cv. O’Neal occurs twice per year in temperate to warm-temperate conditions. Journal of Applied Horticulture 13(1):8–12. Prior, R.L., G. Cao, A. Martin, E. Sofic, J. McEwen, C. O'Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer, and C.M. Mainland. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of agricultural and food chemistry, 46(7):2686–2693. Robson, F., Costa, M. M. R., Hepworth, S. R., Vizir, I., Piñeiro, M., Reeves, P. H., Putterill, J., Coupland, G. 2001 Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28:619–631 Sawa, M., Nusinow, D. A., Kay, S.A., Imaizumi, T. 2007 FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265 Song, G., A. Walworth, D. Zhao, N. Jiang, and J.F. Hancock. 2013a. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep. 32:1759–1769. Song, G., A. Walworth, D. Zhao, B. Hildebrandt, and M. Leasia. 2013b. Constitutive expression of the K-domain of a Vaccinium corymbosumSOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Rep. 32(11):1819–1826. Song, G. and Q. Chen. 2018. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals flowering pathway genes involved in chilling-mediated flowering in blueberry. BMC Plant Biology 18(1):98. Song, G., A. Walworth, T. Lin, Q. Chen, X. Han, L. Zaharia, and G. Zhong. 2019. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. Horticulture Research 6(1):1-15. Spann, T.M., J.G. Willamson, and R.J. Darnell. 2003. Photoperiodic effects on vegetative and reproductive growth of Vaccinium darrowi and V. corymbosum interspecific hybrids. Hort. Sci. 38:192–195. Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach, and G. Coupland. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660): 1003-1006. Varkonyi‐Gasic, E., S.M. Moss, C. Voogd, T. Wang, J. Putterill, and R.P. Hellens. 2013. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist 198(3):732–746. Varoquaux, F., R. Blanvillain, M. Delseny, and P. Gallois. 2000. Less is better: new approaches for seedless fruit production. Trends in Biotechnology 18: 233–242. Walworth, A.E., B. Chai, and G.Q. Song. 2016. Transcript profile of flowering regulatory genes in VcFT-overexpressing blueberry plants. PLoS ONE 11: e0156993. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21953 | - |
dc.description.abstract | 在亞熱帶氣候下種植的兔眼藍莓(Vaccinium virgatum Aiton),秋季經常在頂 梢出現反季節開花的現象,具有產期調節的生產潛力。本論文研究目的在透過對開 花和授粉的研究,探討對果實產量與品質的影響,來提高反季節藍莓果實的生產力。 根據在亞熱帶氣候中的觀察,本論文的假說為,溫暖的秋季溫度有利於營養生長持 續生長,但同時期的短日長則誘導頂梢生長點花芽分化,進而導致某些兔眼藍莓品 種的反季節開花現象。為了證明這一假說,本論文分析兔眼藍莓’NTU031’和’Austin’ 的開花行為和開花相關基因(VcFT,VcCEN 和 VcCOL5)的表現。從 11 月下旬開 始,’NTU031’枝梢未停心且直接開花,而’Austin’大多數頂芽都已停心。在’NTU031’ 中,VcFT(開花啟動子)的表達在 10 月中旬增加,而 VcCEN(開花抑制子)和 VcCOL5(光週期誘導開花的抑制子)的表達則明顯下降。然而同時期在’Austin’上, 上述基因的表達沒有明顯的波動。結果顯示,VcFT 轉錄的變化與’NTU031’的反季 節開花呈正相關,而 VcCEN 和 VcCOL5 表達的變化與反季節開花呈負相關。 反季節花朵所產生的果實通常較小,這可能是由於缺乏花粉和昆蟲授粉媒介 來進行異花授粉所致。本論文對四個反季節開花品種和品系進行了人工授粉試驗, 以驗證此假說。在所有品種中,異花授粉增加漿果的直徑、重量、種子數量且縮短 漿果發育日數。種子數量與漿果重量之間呈正相關,種子數量與漿果發育時期之間 則呈負相關,顯示種子刺激了果實的發育。根據授粉試驗,與其他品種相 比,’NTU025’ 開放授粉可得更大的果實。為測試’NTU025’中自交和單性結實的可 能性,分別進行了花粉管生長觀察和無花粉處理。結果發現,’NTU025’在無授粉 條件下亦可結實,顯示’NTU025’具有單性結實能力。自花授粉後,其花粉管生長 可到達胚珠。然而,果實中並未產生種子,顯示自花受粉後,可能未完成受精,或 自花受精後的胚珠並未發育。儘管人工授粉可以有效地改善反季節水果的質量,但 耗時且勞力需求大,因此,’NTU025’等自花結實品種對反季節水果的生產非常有價值。總結授粉試驗的結果,增加異花授粉的機會或利用像’NTU025’這樣的自花 結實的品種將提高反季節生產力。這些研究將成為臺灣反季節兔眼藍莓生產的基 礎。 | zh_TW |
dc.description.abstract | Rabbiteye blueberries (Vaccinium virgatum Aiton) cultivated in the subtropical climate often display off-season flowering on the shoot apices, which offers a potential for off-season berry production. The aim of this study was to elevate off-season productivity through the research on flowering and pollination, which directly determine yield. According to filed observations in the subtropical climate, it was hypothesized that the mild autumn temperature favors vegetative growth while the concurrent short photoperiod promotes flower differentiation in the shoot apex, resulting in off-season blooming in some rabbiteye blueberry cultivars. To prove this hypothesis, the flowering behavior and expression of flowering-related genes (VcFT, VcCEN, and VcCOL5) in rabbiteye blueberry ‘NTU031’ and ‘Austin’ were analyzed. ‘NTU031’ showed off- season flowering on growing shoots from late Nov. while most shoots of ‘Austin’ terminated. In ‘NTU031’, VcFT (flowering promoter) expression increased in mid Oct. whereas VcCEN (flowering repressor) and VcCOL5 (photoperiod-mediated flowering) expression decreased. On the other hand, ‘Austin’ did not show any significant fluctuation in the expression of the mentioned genes. The results suggested that changes in the transcription of VcFT positively correlated with off-season flowering and changes in VcCEN and VcCOL5 expression negatively correlated with off-season flowering. Berries produced from the off-season flowers are usually small probably due to the shortage of pollen donors and insect pollinators for cross-pollination. Artificial pollination trials to four off-season flowering cultivars and breeding lines were carried out to test this hypothesis. In all cultivars, cross-pollination increased berry diameter, weight, seed number, and advanced berry ripening. A positive correlation between seednumber and berry weight and a negative correlation between seed number and berry developing period were observed, suggesting that seeds stimulate fruit development. In open-pollination tests, ‘NTU025’ produced bigger berries than other cultivars. To test the possibility of self-compatibility and parthenocarpy in ‘NTU025’, pollen tube growth observation and no-pollination treatment were conducted. Interestingly, ‘NTU025’ set normal sized fruit without pollination, indicating that ‘NTU025’ is parthenocarpic. In addition, pollen tube reached ovules in self-pollinated ‘NTU025’ but no seed was formed, suggesting that fertilization failed or fertilized ovules failed to develop into seeds. Although artificial pollination was effective to improve off-season fruit quality, it is time-consuming and labor-intensive. Therefore, self-fruitful cultivars such as ‘NTU025’ are valuable for off-season fruit production. In conclusion of the pollination test, to increase chances of cross-pollination or utilize self-fruitful cultivars like ‘NTU025’ will elevate the off-season productivity. These studies will provide insights into the development of off-season rabbiteye blueberry production in Taiwan. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:54:48Z (GMT). No. of bitstreams: 1 U0001-0803202113590000.pdf: 2751042 bytes, checksum: a5ac129b8f89a0acac2cdd2f8518bec8 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 中文摘要 (Chinese abstract) ..... 1 Abstract ..... 3 Chapter 1 Introduction ..... 5 1. 1. General introduction of blueberry ..... 5 1. 2. Off-season flowering in blueberry ..... 5 Chapter 2 Molecular regulation of off-season flowering in blueberry ..... 7 2. 1. Introduction ..... 7 2. 1. 1. Genetic regulation of blueberry flowering ..... 7 2. 1. 2. Off-season flowering in Taipei ..... 8 2. 2. Materials and Methods ..... 9 2. 2. 1. Plant materials ..... 9 2. 2. 2. RNA extraction ..... 10 2. 2. 3. Primers ..... 10 2. 2. 4. cDNA synthesis and qPCR analysis ..... 11 2. 3. Results and Discussions ..... 11 2. 3. 1. Characterization of off-season flowering ..... 11 2. 3. 2. Expression of VcFT, VcCOL5, and VcFT ..... 12 2. 3. 3. Putative model of blueberry off-season flowering on the basis of the expression pattern of VcFT, VcCOL5, and VcCEN ..... 13 Chapter 3 Pollination compatibility in off-season flowering rabbiteye blueberries ..... 16 3. 1. Introduction ..... 16 3. 2. Materials and Methods ..... 17 3. 2. 1. Plant materials ..... 17 3. 2. 2. Emasculation and collection of pollen ..... 17 3. 2. 3. Artificial pollination ..... 17 3. 2. 4. Pollen germination test ..... 18 3. 2. 5. Investigation of fruit quality ..... 18 3. 2. 6. Statistics ..... 18 3. 3. Results and Discussions ..... 18 3. 3. 1. Pollen germination test ..... 19 3. 3. 2. Off-season flowers and fruits in 2019 ..... 19 3. 3. 3. The effect of pollination➀: ‘Myers’ as a seed parent ..... 19 3. 3. 4. The effect of pollination➁: ‘Blueshower’ as a seed parent ..... 20 3. 3. 5. The effect of pollination➂: ‘NTU015-070’ as a seed parent ..... 21 3. 3. 6. The effect of pollination➃: ‘NTU025’ as a seed parent ..... 21 3. 3. 7. Comparison of open-pollinated fruits ..... 22 3. 3. 8. Comparison between off-season fruits and on-season fruits ..... 23 Chapter 4 The evaluation of self-fruitful trait of ‘NTU025’ ..... 24 4. 1. Introduction ..... 24 4. 2. Materials and Methods ..... 25 4. 2. 1. Plant material ..... 25 4. 2. 2. Self-pollination treatment in ‘NTU025’ ..... 25 4. 2. 3. No-pollination treatment in ‘NTU025’ ..... 25 4. 2. 4. Microscopic investigation of pollen tube growth ..... 27 4. 2. 5. Statistical analysis ..... 27 4. 3. Results and Discussion ..... 27 4. 3. 1. Self-pollination in ‘NTU025’ ..... 27 4. 3. 2. No-pollination in ‘NTU025’ ..... 28 4. 3. 3. Microscopic investigation of pollen tube growth ..... 28 4. 3. 4. Fruit shape of self- and no-pollinated ‘NTU025’ fruits ..... 28 Chapter 5 Conclusions and Future research ..... 29 5. 1. General conclusions ..... 29 5. 2. Future research ..... 30 References ..... 31 List of Tables Table. 3. 1. Comparison of fruit set and fruit weight between open-pollinated fruits of different cultivars. ..... 69 Table. 3. 2. Comparison of on-season fruits and off-season fruits in ‘Myers’ and ‘NTU025’. ..... 70 List of Figures Fig. 2. 1. Leaf and bud sampling procedure. …………………………………………. 37 Fig. 2. 2. Observation of apical buds and off-season flowering behavior in Austin and ‘NTU031’. …………………………………………………………………………… 38 Fig. 2. 3. Expression pattern of VcFT in ‘NTU031’. ………………………………….. 39 Fig. 2. 4. Expression pattern of VcFT in ‘Austin’. …………………………………….. 40 Fig. 2. 5. Expression pattern of VcCEN in ‘NTU031’. ……………………………… 41 Fig. 2. 6. Expression pattern of VcCEN in ‘Austin’. ………………………………… 42 Fig. 2. 7. Expression pattern of VcCOL5 in ‘NTU031’. ……………………………… 43 Fig. 2. 8. Expression pattern of VcCOL5 in ‘Austin’. ………………………………. 44 Fig. 2. 9. Proposed flowering model for molecular events occurring in off-season blooming blueberry. ………………………………………………………………….. 45 Fig. 3. 1. The appearance of mature seeds and immature seeds from ‘NTU025’ fruit. .. 46 Fig. 3. 2. Comparison of cross- and open-pollinated ‘Myers’ fruits. …………………. 47 Fig. 3. 3. The effect of pollination on 'Myers' fruit diameter. ………………….. 48 Fig. 3. 4. The effect of pollination on ‘Myers’ fruit set. ………………………………. 49 Fig. 3. 5. The effect of pollination on 'Myers' fruit weight. ………………………….. 50 Fig. 3. 6. The effect of pollination on ‘Myers’ fruit development period. …………… 51 Fig 3. 7. The effect of pollination on mature seed number in 'Myers' fruit. …………. 52 Fig. 3. 8. The effect of pollination on total seed number in 'Myers' fruit. ……………. 53 Fig. 3. 9. The relation between mature seed number and fruit weight in ‘Myers’. …. 54 Fig. 3. 10. The relation between mature seed number and fruit development period in ‘Myers’. …………………………………………………………………………… 55 Fig. 3. 11. The effect of pollination on ‘Blueshower’ fruit set. ……………………….. 56 Fig. 3. 12. The effect of pollination on 'Blueshower' fruit weight. ………………… 57 Fig. 3. 13. The effect of pollination on ‘Blueshower’ fruit development period. ……. 58 Fig. 3. 14. The effect of pollination on mature seed number in 'Blueshower' fruit. … 59 Fig. 3. 15. The effect of pollination on total seed number in ‘Blueshower’ fruit. ……. 60 Fig. 3. 16. The effect of pollination on ‘NTU015-070’ fruit set. ……………………. 61 Fig. 3. 17. The effect of pollination on NTU015-070' fruit weight. …………………. 62 Fig. 3. 18. The effect of pollination on ‘NTU015-070’ fruit development period. ……. 63 Fig. 3. 19. The effect of pollination on mature seed number in ‘NTU015-070’ fruit. … 64 Fig. 3. 20. The effect of pollination on total seed number in ‘NTU015-070’ fruit. …. 65 Fig. 3. 21. The effect of pollination on ‘NTU025’ fruit diameter. ………………… 66 Fig. 3. 22. The effect of pollination on ‘NTU025’ fruit set. ………………………… 67 Fig. 3. 23. The effect of pollination on ‘NTU025’ fruit weight. ……………………… 68 Fig. 3. 24. The effect of pollination on ‘NTU025’ fruit development period. ……….. 69 Fig. 3. 25. The effect of pollination on mature seed number in ‘NTU025’ fruit. …… 70 Fig. 3. 26. The effect of pollination on total seed number in ‘NTU025’ fruit. ………. 71 Fig. 3. 27. The relation between mature seed number and fruit weight in ‘NTU025’. .. 72 Fig. 3. 28. The relation between mature seed number and fruit development period in ‘NTU025’. ……………………………………………..…………………………… 73 Fig. 4. 1. Pollen tube growth observation. ……………………………………………. 76 Fig. 4. 2. Open-, self- and no-pollinated fruits with no seed and aborted ovules. …….. 77 Fig. 4. 3. Pollen tube growth observation in ‘NTU025’. ……………………………. 78 Fig. 4. 4. Pollen tube growth observation in ‘NTU025’. ……………………………… 79 Fig. 4. 5. Ratio of oval-shaped ‘NTU025’ fruits. ……………………………………. 80 List of Appendices Appendix 2. 1. Procedure of RNA extraction using PureLink® Plant RNA Reagent. ... 81 Appendix. 2. 2. Procedure of PCI purification. ……………………………………… 83 | |
dc.language.iso | en | |
dc.title | 反季節兔眼藍莓之開花與授粉 | zh_TW |
dc.title | Flowering and pollination in off-season rabbiteye blueberry (Vaccinium virgatum Aiton) production | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳香君(Shiang-Jiuun Chen),許富鈞(Fu-Chiun Hsu) | |
dc.subject.keyword | 藍莓,開花基因,授粉,果實發育, | zh_TW |
dc.subject.keyword | Blueberry,flowering genes,pollination,fruit development, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU202100778 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-03-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0803202113590000.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。