請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡育彰(Yu-Chang Tsai) | |
| dc.contributor.author | Wei-Chen Wang | en |
| dc.contributor.author | 王維晨 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:54:07Z | - |
| dc.date.copyright | 2018-08-17 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 林德哲 (2016) 水稻細胞分裂素訊息反應調節蛋白 OsRR9 和 OsRR10 之生理功能探討. 臺灣大學農藝學研究所學位論文: 1-71
侯雅文 (2016) 水稻細胞分裂素訊息反應調節蛋白 OsRR6 與 OsRR11 之生理功能探討. 臺灣大學農藝學研究所學位論文: 1-68 Abdullah Z, Ahmad R (1990) Effect of pre‐and post‐kinetin treatments on salt tolerance of different potato cultivars growing on saline soils. Journal of Agronomy and Crop Science 165: 94-102 Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 59: 4119-4131 Albrecht T, Argueso CT (2016) Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off. Annals of Botany 119: 725-735 Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell & Environment 31: 325-340 Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal 36: 229-239 Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell & Environment 32: 1147-1160 Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant Cell 20: 2102-2116 Arnaud D, Lee S, Takebayashi Y, Choi D, Choi J, Sakakibara H, Hwang I (2017) Regulation of reactive oxygen species homeostasis by cytokinins modulates stomatal immunity in Arabidopsis. The Plant Cell: tpc. 00583.02016 Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F (2016) Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. Journal of Plant Physiology 191: 101-110 Bahmani K, Noori SAS, Darbandi AI, Akbari A (2015) Molecular mechanisms of plant salinity tolerance: a review. Australian Journal of Crop Science 9: 321 Barceló AR (1998) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207: 207-216 Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207 Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology 104: 667-673 Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal 22: 2004-2014 Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465: 140-151 Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. The Plant Cell 10: 1009-1019 Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Science 269: 47-55 Chen DH, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter 17: 53-57 Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G (2015) Rice potassium transporter OsHAK1 is essential for maintaining potassium‐mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell & Environment 38: 2747-2765 Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Frontiers in Plant Science 8: 1885 Cheng X, Jiang H, Zhang J, Qian Y, Zhu S, Cheng B (2010) Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Genetics and Molecular Research 9: 348-359 Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiology 104: 339-347 Cock J, Yoshida S, Forno DA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute. Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7: e39865 Cutcliffe JW, Hellmann E, Heyl A, Rashotte AM (2011) CRFs form protein–protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. Journal of Experimental Botany 62: 4995-5002 D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology 124: 1706-1717 Davenport RJ, MUÑOZ‐MAYOR A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 30: 497-507 Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends in Plant Science 19: 371-379 Dempsey DMA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences 18: 547-575 Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66: 482-487 Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. Bioessays 18: 557-565 Gao J-P, Chao D-Y, Lin H-X (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1: 36-51 Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) A cytokinin oxidase/dehydrogenase gene OsCKX4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiology 165: 1035-1046 Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). Journal of Experimental Botany 59: 3039-3050 Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930 Gupta B, Joshi R, Pareek A, Singla‐Pareek SL (2017) Transgenic approaches to improve crop productivity via phytohormonal research: a focus on the mechanisms of phytohormone action. Mechanism of Plant Hormone Signaling under Stress: 533-567 Gupta S, Rashotte AM (2012) Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Reports 31: 801-812 Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science 17: 172-179 Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology 32: 113-120 Hammond-Kosack KE, Jones J (1996) Resistance gene-dependent plant defense responses. The Plant Cell 8: 1773 Hansen H, Dörffling K (2003) Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance? Functional Plant Biology 30: 365-375 Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology 51: 463-499 Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment 33: 552-565 Havlová M, Dobrev P, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell & Environment 31: 341-353 He Y, Fu J, Yu C, Wang X, Jiang Q, Hong J, Lu K, Xue G, Yan C, James A (2015) Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. Journal of Experimental Botany 66: 6877-6889 Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences of the United States of America 101: 8821-8826 Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant and Cell Physiology 48: 523-539 Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59: 75-83 Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14: 660-668 Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44: 928-938 Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. The Plant Cell 14: 2015-2029 Hunter T (1991) Protein kinase classification. Methods in Enzymology 200: 3 Hwang I, Chen H-C, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiology 129: 500-515 Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383 Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annual Review of Plant Biology 63: 353-380 Igari K, Endo S, Hibara Ki, Aida M, Sakakibara H, Kawasaki T, Tasaka M (2008) Constitutive activation of a CC‐NB‐LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. The Plant Journal 55: 14-27 Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322: 1380-1384 IRRI (2002) Standard evaluation system for rice. International Rice Research Institute, Philippine: 29-30 Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology 68: 405-434 Itai C, Richmond A, Vaadia Y (1968) Role of root cytokinins during water and salinity stress. Israel Journal of Botany 17:187–195 Jain M, Tyagi AK, Khurana JP (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology 6: 1 Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. Journal of Biological Chemistry 285: 23371-23386 Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla‐Pareek SL (2018) Knockdown of an inflorescence meristem‐specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell & Environment 41: 936-946 Joshi R, Singh B, Bohra A, Chinnusamy V (2015) Salt stress signaling pathways. Managing Salt Tolerance in Plants: Molecular and Genomic Perspectives, CRC Press, London: 51-78 Kang NY, Cho C, Kim J (2013) Inducible expression of Arabidopsis response regulator 22 (ARR22), a type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS One 8: e79248 Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology 169: 1382-1391 Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65: 729-735 Kirkham MB, Gardner W, Gerloff G (1974) Internal water status of kinetin-treated, salt-stressed plants. Plant Physiology 53: 241-243 Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type‐A response regulator of cytokinin signaling. The Plant Journal 67: 472-484 Ko S-S, Li M-J, Ku MS-B, Ho Y-C, Lin Y-J, Chuang M-H, Hsing H-X, Lien Y-C, Yang H-T, Chang H-C (2014) The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. The Plant Cell 26: 2486-2504 Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis research 79: 209 Kumar MN, Jane W-N, Verslues PE (2013) Role of the Putative Osmosensor Arabidopsis Histidine Kinase1 in Dehydration Avoidance and Low-Water-Potential Response. Plant Physiology 161: 942 Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19: 3889-3900 Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438: 1172 Letham D (1994) Cytokinins as phytohormones-sites of bioynthesis, translocation, and function of translocated cytokinin. Cytokinins Chemistry, Activity, and Function: 57-80 Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. The Plant Cell 21: 2163-2178 Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143: 1001-1012 Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Eric Schaller G (2010) Type‐B response regulators ARR1 and ARR12 regulate expression of AtHKT1; 1 and accumulation of sodium in Arabidopsis shoots. The Plant Journal 64: 753-763 Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell 17: 3007-3018 Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. The Plant Cell 1: 403-413 Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiology 51: 914-916 Mira-Rodado V, Veerabagu M, Witthöft J, Teply J, Harter K, Desikan R (2012) Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana. Plant Signaling & Behavior 7: 1467-1476 Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS letters 531: 157-161 Mrízová K, Jiskrová E, Vyroubalová Š, Novák O, Ohnoutková L, Pospíšilová H, Frébort I, Harwood WA, Galuszka P (2013) Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One 8: e79029 Mukherjee S, Choudhuri M (1983) Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58: 166-170 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867-880 Naqvi S, Ansari R, Khanzada A (1982) Response of salt-stressed wheat seedlings to kinetin. Plant Science Letters 26: 279-283 Nguyen KH, Van Ha C, Nishiyama R, Watanabe Y, Leyva-González MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences 113: 3090-3095 Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiology 152: 876-890 Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. The Plant Cell 16: 1365-1377 Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell 23: 2169-2183 Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences 110: 4840-4845 Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A (2012) Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signaling & Behavior 7: 1230-1237 O'Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science 4: 451 Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin‐mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water‐stress. Plant Biotechnology Journal 9: 747-758 Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R (2012) Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytologist 194: 168-180 Pospisilova J, Vagner M, Malbeck J, Travnickova A, Batkova P (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biologia Plantarum 49: 533-540 Pospíšilová H, Jiskrová E, Vojta P, Mrízová K, Kokáš F, Čudejková MM, Bergougnoux V, Plíhal O, Klimešová J, Novák O (2016) Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology 33: 692-705 Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant and Cell Physiology 52: 1904-1914 Raines T, Blakley IC, Tsai Y-C, Worthen JM, Franco-Zorrilla JM, Solano R, Schaller GE, Loraine AE, Kieber JJ (2016) Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biology 16: 260 Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proceedings of the National Academy of Sciences 103: 11081-11085 Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry 94: 104-113 Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37: 1141 Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell 18: 40-54 Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences 104: 19631-19636 Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, Van Montagu MC, Benková E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences 106: 4284-4289 Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. The Arabidopsis Book: e0112 Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Current Opinion in Plant Biology 21: 7-15 Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671 Senadheera P, Singh R, Maathuis FJ (2009) Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. Journal of Experimental Botany 60: 2553-2563 Seo H, Kim S, Jang S, Choo Y, Sohn E, Lee I (2005) Effect of jasmonic acid on endogenous gibberellins and abscisic acid in rice under NaCl stress. Biologia Plantarum 49: 447-450 Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A (2017) Mapping the 'Two-component system' network in rice. Scientific Reports 7: 9287 Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14: 465-477 Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell 24: 2578-2595 Singh D (2015) Allele mining for salt tolerance genes in landraces and improved varieties of rice (Oryza sativa L.). Division of molecular biology and biotechnology, ICAR-Indian, agricultural reasearch institute, New Delhi. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annual Review of Biochemistry 69: 183-215 Su YH, Liu YB, Zhang XS (2011) Auxin–cytokinin interaction regulates meristem development. Molecular Plant 4: 616-625 Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y (2016) OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology 16: 22 Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant and Cell Physiology 45: 28-39 Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology 33: 445-449 Teh CY, Shaharuddin NA, Ho CL, Mahmood M (2016) Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiologiae Plantarum 38: 151 Thordal‐Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal 11: 1187-1194 To JP, Deruère J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. The Plant Cell 19: 3901-3914 To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell 16: 658-671 Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signaling & Behavior 5: 148-150 Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences 104: 20623-20628 Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology 158: 1666-1684 Urao T, Yakubov B, Yamaguchi-Shinozaki K, Shinozaki K (1998) Stress‐responsive expression of genes for two‐component response regulator‐like proteins in Arabidopsis thaliana. FEBS letters 427: 175-178 Venema K, Quintero FJ, Pardo JM, Donaire JP (2001) The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. Journal of Biological Chemistry 277: 2413-2418 Walker M, Dumbroff E (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. Zeitschrift für Pflanzenphysiologie 101: 461-470 Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y (2011) Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. The Plant Journal 68: 249-261 Werner T, Schmülling T (2009) Cytokinin action in plant development. Current Opinion in Plant Biology 12: 527-538 Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. The Plant Cell 20: 1101-1117 Wu X, He J, Chen J, Yang S, Zha D (2014) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 251: 169-176 Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57: 781-803 Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science 10: 615-620 Yang C, Liu J, Dong X, Cai Z, Tian W, Wang X (2014) Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Molecular Plant 7: 841-855 Yang CM, Juang KW (2015) Alleviation effects of calcium and potassium on cadmium rhizotoxicity and absorption by soybean and wheat roots. Journal of Plant Nutrition and Soil Science 178: 748-754 Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ (2013) Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Current Biology 23: 1979-1989 Zhang W, Wang R, Jing W, Xiao L, Jin Y, Shen L (2015) The OsHKT1; 1 transporter is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology 168: 1076-1090 Zhao Y, Hu Y, Dai M, Huang L, Zhou D-X (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. The Plant Cell 21: 736-748 Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247-273 Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM, Benkova E, Mukhtar MS, Van Breusegem F (2016) Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiology 172: 1249-1258 Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. Journal of Experimental Botany 66: 4863-4871 Zwack PJ, Shi X, Robinson BR, Gupta S, Compton MA, Gerken DM, Goertzen LR, Rashotte AM (2012) Vascular expression and C-terminal sequence divergence of cytokinin response factors in flowering plants. Plant and Cell Physiology 53: 1683-1695 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21939 | - |
| dc.description.abstract | 細胞分裂素 (Cytokinin, CK) 是透過磷酸傳遞雙分子訊息系統 (two-component signal system, TCS) 來進行訊息傳遞並參與諸多植物的生理功能,如調控細胞分裂、器官發生、延緩葉片老化。 近年來,許多研究指出細胞分裂素的訊息傳遞可能也參與在植物在逆境下的反應調節。而A型反應調節蛋白 (Type-A response regulators, Type-A RRs) 是細胞分裂素主要誘導的一群訊息基因,調控細胞分裂素相關的生理反應。 本論文主要探討在水稻細胞分裂素TCS中,Type-A II群RRs中OsRR9與其具高相似度的OsRR10在鹽害逆境下可能參與逆境反應調控之功能。以CRISPR/Cas9基因編輯技術產生OsRR9與OsRR10的雙重突變系, 於幼苗期以150 mM NaCl鹽害處理1、2、4天進行調查,結果顯示OsRR9、10雙重突變系的葉片萎凋與受到的光損傷程度均低於野生型,且在細胞膜系離子的滲漏度、不定根長與根數、光合作用能力的受抑制程度較低。 探討其背後的生理機制則可觀察到在OsRR9、10的雙重突變系中,Na+離子含量在植株體內累積較野生型低。以RNA-sequencing進行鹽害逆境下的轉錄分析則發現當OsRR9、10失去功能時,有許多的Na+離子轉運蛋白與Na+/ H+離子轉運蛋白的基因表現在鹽害逆境下明顯被誘導,並減少細胞分裂素生合成與訊息輸出的基因表現。綜合以上結果可知,OsRR9、OsRR10可能會抑制Na+與Na+/ H+離子通道轉運蛋白的表現,進而影響鹽害下植株的Na+離子含量,在鹽害逆境耐受性中扮演負向調控的角色。 | zh_TW |
| dc.description.abstract | Cytokinin (CK) signaling regulates plant growth and development process through two-component signal system (TCS). Recently, numerous reports indicate that cytokinin signaling participates in plant stress response, but little is known about the role of TCS in stress tolerance. Type-A response regulators (RRs) are part of the TCS, primarily induced by cytokinin, and regulate cytokinin signal response. In this research, we performed functional analyses of type-A response regulator OsRR9 and OsRR10 under salt stress. To determine the function of OsRR9 and OsRR10 under salinity, we treated the Osrr9/10 double mutant lines generated by CRISPR/Cas9 with 150 mM NaCl for 1, 2, and 4 days. The results showed that OsRR9 and OsRR10 double mutant lines have a more tolerant phenotype than wild type such as less electrolyte leakage and the inhibition ratio of root growth under salt stress. In addition, we found that the OsRR9 and OsRR10 double mutant lines accumulated less Na+ in shoot and root under salinity. Furthermore, the RNA-sequencing analysis showed when OsRR9 and OsRR10 loss of function, numerous Na+ and Na+/ H+ transporters were induced after salt treatment. To summarize, OsRR9 and OsRR10 negative regulate the sodium content in plants through inhibiting the gene expression of sodium transporters. Thus, OsRR9 and OsRR10 might be negative regulators in salt stress tolerance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:54:07Z (GMT). No. of bitstreams: 1 ntu-107-R05621112-1.pdf: 6303924 bytes, checksum: 6638f3ac28be586cd09d571580ee22ec (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖表索引 VI 縮寫字對照表 IX 一、前言 1 二、前人研究 2 細胞分裂素訊息反應調節蛋白Type-A RR 3 細胞分裂素含量與非生物逆境之關係 3 細胞分裂素訊息傳遞與非生物逆境之關係 5 植物耐鹽的分子機制 9 OsRR9與OsRR10調節細胞分裂素相關之生理功能 11 三、材料與方法 13 植物材料與生長條件 13 乾旱逆境處理 13 鹽害逆境處理 13 高溫逆境處理 14 水稻幼苗凋萎指數判定 14 電解質滲漏分析 14 根部生育性狀調查 14 葉綠素螢光測定 15 DAB組織化學染色 15 蛋白質萃取與濃度測定 16 Catalase (CAT) 酵素活性分析 16 Ascorbate peroxidase (APX) 酵素活性分析 17 Glutathione reductase (GR) 酵素活性分析 17 水分含量(water content, WC)測定 18 相對水分含量(relative water content, RWC)測定 18 Proline含量測定 18 濕式消化與Na+/K+含量測定 19 RNA萃取 20 移除RNA樣品中之DNA 21 cDNA合成(complementary DNA synthesis) 21 Real-time qPCR 22 RNA sequencing 23 DNA萃取 23 PCR (polymerase chain reaction) 流程 24 DNA電泳及瓊脂膠體純化 25 統計分析 26 四、結果 27 OsRR9、10基因編輯雙重突變系在鹽害處理下地上部之外表型 27 OsRR9、10基因編輯雙重突變系在鹽害逆境下根系生長受抑制的程度較低 27 OsRR9、10基因編輯雙重突變系在鹽害逆境下的葉綠素螢光參數 27 OsRR9、10基因編輯雙重突變系在鹽害逆境下有較低的H2O2累積 28 OsRR9、10基因編輯雙重突變系在鹽害逆境下之抗氧化酵素活性分析 29 OsRR9、10基因編輯雙重突變系在鹽害逆境下的水分含量分析 29 OsRR9、10基因編輯雙重突變系在鹽害逆境下脯胺酸含量分析 29 OsRR9、10基因編輯雙重突變系在滲透逆境處理下之外表型 30 OsRR9、10基因編輯雙重突變系在鹽害逆境下之Na+/K+含量分析 30 OsRR9、10基因編輯雙重突變系在鹽害逆境下之基因表現分析 31 五、討論 35 OsRR9和OsRR10基因編輯雙重突變系的在生長發育上的改變 35 OsRR9和OsRR10基因編輯雙重突變系的耐鹽生理機制 37 OsRR9、10雙重突變系減少鹽害下鈉離子累積的分子機制 39 鹽害下OsRR9和OsRR10蛋白於轉錄層次的功能 40 鹽害下OsRR9和OsRR10於蛋白質層次的功能 43 OsRR9和OsRR10可能有相異的生理功能 44 OsRR9與OsRR10可能也參與在其他逆境的反應當中 45 六、結論 47 七、未來展望 48 八、參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.title | 水稻細胞分裂素訊息反應調節蛋白OsRR9、10與鹽害逆境耐受性之關係 | zh_TW |
| dc.title | Studies on the Physiological Function of Cytokinin Response Regulators OsRR9 and OsRR10 Related to Rice Salt Stress Tolerance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳良築,侯新龍,洪傳揚,張孟基 | |
| dc.subject.keyword | 細胞分裂素,OsRR9,OsRR10,CRISPR/Cas9,鹽害逆境, | zh_TW |
| dc.subject.keyword | Cytokinin,OsRR9,OsRR10,CRISPR/Cas9,salt stress, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201803795 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
