Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21922
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
dc.contributor.author | Yun-Chieh Hsiung | en |
dc.contributor.author | 熊雲潔 | zh_TW |
dc.date.accessioned | 2021-06-08T03:53:16Z | - |
dc.date.copyright | 2018-08-30 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-17 | |
dc.identifier.citation | 1. Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004. 364(9438): p. 937-52.
2. Bolli, P., Treatment of dyslipidemia: the problem of reaching the goal. Atherosclerosis, 2014. 236(1): p. 142-3. 3. Baigent, C., et al., Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 2005. 366(9493): p. 1267-78. 4. Marks, D., et al., A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 2003. 168(1): p. 1-14. 5. Hobbs, H.H., M.S. Brown, and J.L. Goldstein, Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat, 1992. 1(6): p. 445-66. 6. Nordestgaard, B.G., et al., Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. European Heart Journal, 2013. 34(45): p. 3478-+. 7. Daniels, S.R., et al., Pediatric aspects of familial hypercholesterolemias: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol, 2011. 5(3 Suppl): p. S30-7. 8. Heath, K.E., et al., Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis, 2001. 154(1): p. 243-246. 9. Wiegman, A., et al., Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J, 2015. 36(36): p. 2425-37. 10. Brink, P.A., et al., Familial hypercholesterolemia in South African Afrikaners. PvuII and StuI DNA polymorphisms in the LDL-receptor gene consistent with a predominating founder gene effect. Hum Genet, 1987. 77(1): p. 32-5. 11. Abifadel, M., et al., The Molecular Basis of Familial Hypercholesterolemia in Lebanon: Spectrum of LDLR Mutations and Role of PCSK9 as a Modifier Gene. Human Mutation, 2009. 30(7): p. E682-E691. 12. Betard, C., et al., Molecular Genetic-Evidence for a Founder Effect in Familial Hypercholesterolemia among French-Canadians. Human Genetics, 1992. 88(5): p. 529-536. 13. Berberich, A.J. and R.A. Hegele, The complex molecular genetics of familial hypercholesterolaemia. Nat Rev Cardiol, 2018. 14. Williams, R.R., et al., Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am J Cardiol, 1993. 72(2): p. 171-6. 15. organization, W.H., Familial hypercholesterolaemia Report of a second WHO consultation. Geneva: World Health Organization, 1999. 16. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Scientific Steering Committee on behalf of the Simon Broome Register Group. Atherosclerosis, 1999. 142(1): p. 105-12. 17. Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ, 1991. 303(6807): p. 893-6. 18. Kindt, I., P. Mata, and J.W. Knowles, The role of registries and genetic databases in familial hypercholesterolemia. Curr Opin Lipidol, 2017. 28(2): p. 152-160. 19. Iacocca, M.A., et al., Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia. Journal of Lipid Research, 2017. 58(11): p. 2202-2209. 20. Besseling, J., et al., Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers. Atherosclerosis, 2014. 233(1): p. 219-23. 21. Sharifi, M., et al., Genetic Architecture of Familial Hypercholesterolaemia. Curr Cardiol Rep, 2017. 19(5): p. 44. 22. Brown, M.S. and J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis. Science, 1986. 232(4746): p. 34-47. 23. Jiang, L., et al., The distribution and characteristics of LDL receptor mutations in China: A systematic review. Sci Rep, 2015. 5: p. 17272. 24. Lahtinen, A.M., et al., Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis, 2015. 238(1): p. 64-69. 25. Usifo, E., et al., Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann Hum Genet, 2012. 76(5): p. 387-401. 26. Pisciotta, L., et al., A 'de novo' mutation of the LDL-receptor gene as the cause of familial hypercholesterolemia. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2002. 1587(1): p. 7-11. 27. Wang, J., et al., Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically. Arteriosclerosis Thrombosis and Vascular Biology, 2016. 36(12): p. 2439-2445. 28. Defesche, J.C., et al., Familial hypercholesterolaemia. Nat Rev Dis Primers, 2017. 3: p. 17093. 29. Myant, N.B., et al., Estimation of the age of the ancestral arginine3500-->glutamine mutation in human apoB-100. Genomics, 1997. 45(1): p. 78-87. 30. Varret, M., et al., Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin Genet, 2008. 73(1): p. 1-13. 31. Tai, D.Y., J.P. Pan, and G.J. Lee-Chen, Identification and haplotype analysis of apolipoprotein B-100 Arg3500-->Trp mutation in hyperlipidemic Chinese. Clin Chem, 1998. 44(8 Pt 1): p. 1659-65. 32. Myant, N.B., Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis, 1993. 104(1): p. 1-18. 33. Cariou, B., C. Le May, and P. Costet, Clinical aspects of PCSK9. Atherosclerosis, 2011. 216(2): p. 258-265. 34. Maxwell, K.N., E.A. Fisher, and J.L. Breslow, Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(6): p. 2069-2074. 35. Gidding, S.S., et al., The Agenda for Familial Hypercholesterolemia A Scientific Statement From the American Heart Association. Circulation, 2015. 132(22): p. 2167-2192. 36. Fouchier, S.W., et al., Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res, 2014. 115(6): p. 552-5. 37. Brautbar, A., et al., Genetics of familial hypercholesterolemia. Curr Atheroscler Rep, 2015. 17(4): p. 491. 38. Awan, Z., et al., APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis, 2013. 231(2): p. 218-22. 39. Marduel, M., et al., Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum Mutat, 2013. 34(1): p. 83-7. 40. Rader, D.J., J. Cohen, and H.H. Hobbs, Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest, 2003. 111(12): p. 1795-803. 41. Tada, H., et al., Autosomal recessive hypercholesterolemia: a mild phenotype of familial hypercholesterolemia: insight from the kinetic study using stable isotope and animal studies. J Atheroscler Thromb, 2015. 22(1): p. 1-9. 42. Fellin, R., et al., The history of Autosomal Recessive Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene, 2015. 555(1): p. 23-32. 43. Pisciotta, L., et al., Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis, 2006. 188(2): p. 398-405. 44. Naoumova, R.P., et al., Autosomal recessive hypercholesterolaemia: long-term follow up and response to treatment. Atherosclerosis, 2004. 174(1): p. 165-72. 45. Hubacek, J.A., et al., Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat, 2001. 18(4): p. 359-60. 46. Buonuomo, P.S., et al., Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. Atherosclerosis, 2017. 262: p. 71-77. 47. Renner, C., W.E. Connor, and R.D. Steiner, Sitosterolemia Presenting as Pseudohomozygous Familial Hypercholesterolemia. Clinical Medicine & Research, 2016. 14(2): p. 103-108. 48. Ford, E.S., et al., Hypertriglyceridemia and Its Pharmacologic Treatment Among US Adults. Archives of Internal Medicine, 2009. 169(6): p. 572-578. 49. Hegele, R.A., et al., The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes & Endocrinology, 2014. 2(8): p. 655-666. 50. Retterstol, K., et al., Severe hypertriglyceridemia in Norway: prevalence, clinical and genetic characteristics. Lipids Health Dis, 2017. 16(1): p. 115. 51. Rahalkar, A.R. and R.A. Hegele, Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab, 2008. 93(3): p. 282-94. 52. Surendran, R.P., et al., Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med, 2012. 272(2): p. 185-96. 53. Yuan, G., K.Z. Al-Shali, and R.A. Hegele, Hypertriglyceridemia: its etiology, effects and treatment. CMAJ, 2007. 176(8): p. 1113-20. 54. Truninger, K., et al., Recurrent acute and chronic pancreatitis in two brothers with familial chylomicronemia syndrome. Pancreas, 2006. 32(2): p. 215-219. 55. Shah, A.S. and D.P. Wilson, Genetic Disorders Causing Hypertriglyceridemia in Children and Adolescents, in Endotext, L.J. De Groot, et al., Editors. 2000: South Dartmouth (MA). 56. Hegele, R.A., et al., Targeted next-generation sequencing in monogenic dyslipidemias. Current Opinion in Lipidology, 2015. 26(2): p. 103-113. 57. Viljoen, A. and A.S. Wierzbicki, Diagnosis and treatment of severe hypertriglyceridemia. Expert Rev Cardiovasc Ther, 2012. 10(4): p. 505-14. 58. Smith, A.J., et al., Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar. Hum Mol Genet, 2010. 19(20): p. 3936-47. 59. Johansen, C.T. and R.A. Hegele, Allelic and phenotypic spectrum of plasma triglycerides. Biochim Biophys Acta, 2012. 1821(5): p. 833-42. 60. Davies, B.S.J., et al., GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metabolism, 2010. 12(1): p. 42-52. 61. Peterfy, M., et al., Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nature Genetics, 2007. 39(12): p. 1483-1487. 62. Cefalu, A.B., et al., Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia. J Clin Endocrinol Metab, 2009. 94(11): p. 4584-90. 63. Genest, J.J., Jr., et al., Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation, 1992. 85(6): p. 2025-33. 64. Goldstein, J.L., et al., Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest, 1973. 52(7): p. 1544-68. 65. Pullinger, C.R., et al., An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian-American patients. Journal of Lipid Research, 2008. 49(8): p. 1846-1854. 66. Lee, J.C., A.J. Lusis, and P. Pajukanta, Familial combined hyperlipidemia: upstream transcription factor 1 and beyond. Curr Opin Lipidol, 2006. 17(2): p. 101-9. 67. Shah, A.S. and D.P. Wilson, Primary hypertriglyceridemia in children and adolescents. J Clin Lipidol, 2015. 9(5 Suppl): p. S20-8. 68. Priore Oliva, C., et al., Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol, 2005. 25(2): p. 411-7. 69. Wang, J., M.R. Ban, and R.A. Hegele, Multiplex ligation-dependent probe amplification of LDLR enhances molecular diagnosis of familial hypercholesterolemia. J Lipid Res, 2005. 46(2): p. 366-72. 70. Chiou, K.R., M.J. Charng, and H.M. Chang, Array-based resequencing for mutations causing familial hypercholesterolemia. Atherosclerosis, 2011. 216(2): p. 383-9. 71. Chiou, K.R. and M.J. Charng, Detection of mutations and large rearrangements of the low-density lipoprotein receptor gene in Taiwanese patients with familial hypercholesterolemia. Am J Cardiol, 2010. 105(12): p. 1752-8. 72. Norsworthy, P.J., et al., Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study. Bmc Medical Genetics, 2014. 15. 73. Pek, S.L.T., et al., Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study. Atherosclerosis, 2018. 269: p. 106-116. 74. Chen, Y., et al., SeqCNV: a novel method for identification of copy number variations in targeted next-generation sequencing data. BMC Bioinformatics, 2017. 18(1): p. 147. 75. Amsellem, S., et al., Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet, 2002. 111(6): p. 501-10. 76. De Castro-Oros, I., et al., Common Genetic Variants Contribute to Primary Hypertriglyceridemia Without Differences Between Familial Combined Hyperlipidemia and Isolated Hypertriglyceridemia. Circulation-Cardiovascular Genetics, 2014. 7(6): p. 814-U164. 77. Johansen, C.T., et al., An Increased Burden of Common and Rare Lipid-Associated Risk Alleles Contributes to the Phenotypic Spectrum of Hypertriglyceridemia. Arteriosclerosis Thrombosis and Vascular Biology, 2011. 31(8): p. 1916-U460. 78. Dilliott, A.A., et al., Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease. J Vis Exp, 2018(134). 79. Huey-Jen Hsu, S., et al., Validation of the Estimation of Low-density Lipoprotein Cholesterol by the Modified Friedewald Equation in Ethnic Chinese Adults Living in Taiwan. Intern Med, 2015. 54(18): p. 2291-7. 80. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-60. 81. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303. 82. DePristo, M.A., et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 2011. 43(5): p. 491-+. 83. San Lucas, F.A., et al., Integrated annotation and analysis of genetic variants from next-generation sequencing studies with variant tools. Bioinformatics, 2012. 28(3): p. 421-422. 84. Wang, K., M.Y. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010. 38(16). 85. Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 2009. 4(7): p. 1073-81. 86. Adzhubei, I.A., et al., A method and server for predicting damaging missense mutations. Nat Methods, 2010. 7(4): p. 248-9. 87. Robinson, J.T., et al., Integrative genomics viewer. Nat Biotechnol, 2011. 29(1): p. 24-6. 88. Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 2013. 14(2): p. 178-92. 89. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24. 90. Barrett, J.C., et al., Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005. 21(2): p. 263-5. 91. Zhao, M., et al., Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. Bmc Bioinformatics, 2013. 14. 92. Feng, Y.M., et al., Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genetics in Medicine, 2015. 17(2): p. 99-107. 93. Faiz, F., et al., Detection of variations and identifying genomic breakpoints for large deletions in the LDLR by Ion Torrent semiconductor sequencing. Atherosclerosis, 2013. 230(2): p. 249-55. 94. Chiou, K.R. and M.J. Charng, Common mutations of familial hypercholesterolemia patients in Taiwan: characteristics and implications of migrations from southeast China. Gene, 2012. 498(1): p. 100-6. 95. Radovica-Spalvina, I., et al., Next-generation-sequencing-based identification of familial hypercholesterolemia-related mutations in subjects with increased LDL-C levels in a latvian population. Bmc Medical Genetics, 2015. 16. 96. Austin, M.A., et al., Genetic causes of monogenic heterozygous familial hypercholesterolemia: A HuGE prevalence review. American Journal of Epidemiology, 2004. 160(5): p. 407-420. 97. Bhatnagar, D., et al., Outcome of case finding among relatives of patients with known heterozygous familial hypercholesterolaemia. British Medical Journal, 2000. 321(7275): p. 1497-1500a. 98. Iacocca, M.A. and R.A. Hegele, Recent advances in genetic testing for familial hypercholesterolemia. Expert Rev Mol Diagn, 2017. 17(7): p. 641-651. 99. Stuppia, L., et al., Use of the MLPA Assay in the Molecular Diagnosis of Gene Copy Number Alterations in Human Genetic Diseases. International Journal of Molecular Sciences, 2012. 13(3): p. 3245-3276. 100. Vandrovcova, J., et al., The use of next-generation sequencing in clinical diagnosis of familial hypercholesterolemia. Genetics in Medicine, 2013. 15(12): p. 948-957. 101. Maglio, C., et al., Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. Journal of Internal Medicine, 2014. 276(4): p. 396-403. 102. Kim, H.N., S.S. Kweon, and M.H. Shin, Detection of Familial Hypercholesterolemia Using Next Generation Sequencing in Two Population-Based Cohorts. Chonnam Med J, 2018. 54(1): p. 31-35. 103. Yang, K.C., et al., LDLR and ApoB are major genetic causes of autosomal dominant hypercholesterolemia in a Taiwanese population. J Formos Med Assoc, 2007. 106(10): p. 799-807. 104. Schaefer, J.R., et al., Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. Arterioscler Thromb Vasc Biol, 1997. 17(2): p. 348-53. 105. Whitfield, A.J., et al., Lipid disorders and mutations in the APOB gene. Clin Chem, 2004. 50(10): p. 1725-32. 106. National Library of Medicine (US) ClinVar. Available from: https://www.ncbi.nlm.nih.gov/clinvar/variation/496015/#summary-evidence. 107. Li, X.Y., et al., Compound but non-linked heterozygous p.W14X and p.L279 V LPL gene mutations in a Chinese patient with long-term severe hypertriglyceridemia and recurrent acute pancreatitis. Lipids in Health and Disease, 2018. 17. 108. Chan, L., et al., Compound heterozygosity of Leu252Val and Leu252Arg causing lipoprotein lipase deficiency in a Chinese patient with hypertriglyceridemia. European Journal of Clinical Investigation, 2000. 30(1): p. 33-40. 109. Yang, T., et al., Pathogenic mutations of the lipoprotein lipase gene in Chinese patients with hypertriglyceridemic type 2 diabetes. Hum Mutat, 2003. 21(4): p. 453. 110. Khovidhunkit, W., et al., Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach. J Clin Lipidol, 2016. 10(3): p. 505-511 e1. 111. Chen, T.Z., et al., A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis. Lipids Health Dis, 2014. 13: p. 52. 112. Kao, J.T., et al., Newly identified missense mutation reduces lipoprotein lipase activity in Taiwanese patients with hypertriglyceridemia. Journal of the Formosan Medical Association, 1999. 98(9): p. 606-612. 113. Jelassi, A., et al., Autosomal dominant hypercholesterolemia: needs for early diagnosis and cascade screening in the tunisian population. Curr Genomics, 2013. 14(1): p. 25-32. 114. Haase, A. and A.C. Goldberg, Identification of people with heterozygous familial hypercholesterolemia. Curr Opin Lipidol, 2012. 23(4): p. 282-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21922 | - |
dc.description.abstract | 背景及目的:家族性高膽固醇血症(Familial hypercholesterolemia, FH)是一種體染色體顯性遺傳疾病,其發病特徵為患者血漿中總膽固醇與低密度脂蛋白膽固醇(low-density lipoprotein cholesterol)濃度顯著上升,從而導致動脈粥狀硬化及增加患者罹患冠狀動脈性心臟病(coronary heart disease, CHD)的風險。然而,由於缺乏可靠且符合成本效益的基因檢測,在台灣正式確診的家族性高膽固醇血症患者不到1%。高三酸甘油脂血症(Hypertriglyceridemia)是一種常見的脂質代謝疾病,嚴重的高三酸甘油脂血症會導致復發性急性胰腺炎也會增加心血管疾病的風險。我們的目標是為家族性高膽固醇血症及其他單基因血脂異常疾病建立以次世代定序(Next generation sequencing, NGS)為基礎之基因檢測平台。
方法:在家族性高膽固醇血症基因診斷方面,我們設計針對LDLR全基因以及針對APOB和PCSK9基因編碼序列(coding sequence)的探針,並使用Illumina MiSeq次世代定序平台進行雙端定序(2×300 bps)。13個已知疾病相關變異點的DNA樣品(包含3個大片段重複和2個大片段缺失)用於確效整個實驗流程。隨後我們招募了28位無相關的新收指標患者,其收案標準為血清總膽固醇濃度≥ 8.28 mmol/l、低密度膽固醇濃度(LDL-C)≥ 6.37 mmol/l。此外,我們也設計針對20個已知與單基因血脂異常疾病(monogenic dyslipidemia)有關的致病基因的NGS套組,並招募了17位嚴重高三酸甘油脂血症的患者,其收案標準為血中三酸甘油脂濃度測量至少兩次高於11.3 mmol/l。指標患者家屬接受家族基因篩檢(genetic cascade screening)。 結果:我們正確識別了13個用於確效的DNA樣品中所有疾病相關變異點,包含大片段重複及大片段缺失。在28位新收指標患者中,21位患者發現帶有疾病相關變異位點(75%檢出率);其中5位患者被發現攜帶未被報導過的LDLR c.1186 + 2T> G剪接位點變異。將此五位指標患者及其親屬基因型與表現型比較發現:攜帶LDLR c.1186 + 2T> G組(n = 26)其低密度脂蛋白膽固醇濃度為7.82±2.13 mmol / l與未攜帶組別(n = 25)低密度脂蛋白膽固醇濃度3.18±1.36 mmol / l相比顯著提高( p value <0.0001)。單套型分析 (haplotype analysis)顯示患者LDLR c.1186 + 2T> G起源於共同祖先,揭示了台灣獨特的LDLR突變譜。在嚴重高三酸甘油脂血症基因診斷方面,17位新收指標患者中,13位患者發現帶有疾病相關變異位點(76.5%檢出率);其中八位指標患者帶有LPL p.L279V (47.1%),七位患者帶有APOA5p.G185C (41.2%)。 結論:此研究為首次針對家族性高膽固醇血症使用以覆蓋LDLR全基因區域的捕獲探針為基礎的NGS基因檢測,因此能有效地用於偵測結構變異。該家族性高膽固醇血症基因檢測套組可全面且可靠地檢測FH患者LDLR,APOB和PCSK9的致病變異點位。此外,單基因血脂異常疾病的NGS套組亦能有效的偵測多種遺傳性血脂異常疾病,同時使我們更加了解台灣族群高三酸甘油脂血症的遺傳背景。 | zh_TW |
dc.description.abstract | Background and aims: Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized with high levels of total cholesterol and low-density lipoprotein (LDL) cholesterol in the plasma, causing FH patients to suffer from atherosclerosis and increased risk of coronary heart disease (CHD). However, less than 1% FH patients in Taiwan were formally diagnosed, partly due to the lack of reliable cost-effective genetic testing. Hypertriglyceridemia is a common disorder. Severe hypertriglyceridemia can cause recurrent pancreatitis and also increase risk of cardiovascular disease. We aimed to establish a next-generation sequencing (NGS) platform as the clinical genetic testing method for FH and other monogenic dyslipidemias.
Methods: We designed probes to capture the whole LDLR gene and all coding sequences of APOB and PCSK9, and then sequenced with Illumina MiSeq platform (2 × 300 bps). The entire pipeline was tested on 13 DNA samples with known causative variants (including 3 large duplications and 2 large deletions). Then we enrolled a new cohort of 28 unrelated FH patients with serum cholesterol levels ≥8.28 mmol/l and LDL-C ≥6.47 mmol/l. In addition, we also designed another NGS panel for detecting 20 disease-causing genes known to be associated with monogenic dyslipidemia, and recruited 17 patients with severe hypertriglyceridemia. Severe HTG was defined as at least two lipid measurements with TG ≥11.3 mmol/l. Results: From the 13 validation samples, we correctly identify all the variants, including big duplications and deletions. From the new cohort, we identified the causative variants in 21 of the 28 unrelated probands (75% detection rate); five of them carrying a novel splice site variant c.1186+2T>G in LDLR. Among the family members, the concentration of LDL cholesterol was 7.82±2.13 mmol/l in LDLR c.1186+2T>G carrier group (n = 26), and was significantly higher than 3.18±1.36 mmol/l in the non-carrier group (n = 25) (p value <0.0001). Haplotype analysis shows that LDLR c.1186+2T>G originates from a common ancestor, revealing the specific LDLR mutation spectrum in Taiwan. In the diagnosis of severe hypertriglyceridemia, 13 of the 17 patients were detected to have causative variants (76.5% detection rate). Eight of them had LPL p.L279V (47.1%) and seven patients had APOA5 p.G185C (41.2%). Relatives were included in the genetic cascade screening. Conclusion: This is the first capture-based NGS testing for FH to cover the whole LDLR genomic region, and therefore making reliable structural variation detection. This panel can comprehensively detect disease-causing variants in LDLR, APOB, and PCSK9 for FH patients. In addition, the NGS panel we designed for monogenic dyslipidemia can also effectively detect various dyslipidemia-causing genes, and at the same time, we can better understand the genetic background of hypertriglycerideemia in Taiwan population. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:53:16Z (GMT). No. of bitstreams: 1 ntu-107-R05455003-1.pdf: 3298966 bytes, checksum: 7ba6eda81efb2807e385a0aa8f2c748e (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 ⅰ
誌謝 ⅱ 中文摘要 ⅲ Abstract ⅴ Contents ⅷ List of figures xi List of tables xii List of supplementary information xiii 1. Introduction 1 1.1 Familial hypercholesterolemia 1 1.2 Genetic basis of autosomal dominant hypercholesterolemia (ADH) 3 1.3 Genetic basis of autosomal recessive hypercholesterolemia (ARH) 5 1.4 Hypertriglyceridemia (HTG) 6 1.5 Genetic basis of hypertriglyceridemia (HTG) 7 1.6 Current progress and limitations in genetic testing for familial hypercholesterolemia and hypertriglyceridemia 9 1.7 Aims and objectives of the study 12 2. Materials and methods 13 2.1 Patient recruitment 13 2.2 DNA capture probes design for FH-NGS panel 14 2.3 Lipids and lipoprotein measurements 14 2.4 Dyslipidemia-NGS panel design 15 2.5 Target enrichment, massively parallel sequencing and variant calling 15 2.6 Common SNPs for haplotype analysis 17 3. Results 19 3.1 Validation of the targeted NGS-FH panel for detection of SNVs and structural variations 19 3.2 Disease-causing variants detected in newly recruited FH patients 20 3.3 LDLR c.1186+2T>G splice site variant 21 3.4 Haplotype analysis 21 3.5 Disease-causing variants detected by using expanded panel of 20 dyslipidemia-causing genes 22 3.6 The common variant APOA5 c.553G>T (p.G185C) frequently found in HTG patients in Taiwan 23 4. Discussion 24 5. References 30 | |
dc.language.iso | en | |
dc.title | 為單基因血脂異常疾病建立以次世代定序為基礎之基因檢測平台 | zh_TW |
dc.title | Establishing a next-generation sequencing-based genetic test platform for monogenic dyslipidemia | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇大成(Ta-Chen Su),楊偉勛(Wei-Shiung Yang),張以承(Yi-Cheng Chang) | |
dc.subject.keyword | 家族性高膽固醇血症,高三酸甘油脂症,次世代定序,突變譜,低密度脂蛋白膽固醇接受器基因,單套型,結構變異, | zh_TW |
dc.subject.keyword | Familial hypercholesterolemia,Hypertriglyceridemia,Next generation sequencing,Mutation spectrum,LDLR,Haplotype,structural variation, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201803797 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 3.22 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.