請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21906完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Meng-Jie Tsai | en |
| dc.contributor.author | 蔡孟潔 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:52:27Z | - |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-18 | |
| dc.identifier.citation | Ayhan, D. (2005) Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 27: 761-767.
Ayhan, D. (2009) Biorefineries: Current activities and future developments. Energy Conversion and Management 50(11): 2782-2801. Balat, M., Balat, H., and Oz, C. (2008) Progress in bioethanol processing. Energy and Combustion Science, 34: 551-573. Behera, S., Kar, S., and Chandra, R. (2010) Comparative study of bio-ethanol production from mahula ( Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices. Applied Energy 87: 96-100. Bureau of Energy, Ministry of Economic Affairs, “2014 Energy Technology White Paper”. https://www.moeaboe.gov.tw/ecw/populace/content/ContentLink.aspx?menu_id=137&sub_menu_id=358 Bureau of Energy, Ministry of Economic Affairs (2017). “106 Energy Statistics Handbook”. https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=141 Chang, C.W., Lee, T. H., Lin, W. T., and Chen, C. H. (2015) Electricity generation using biogas from swine manure for farm power requirement. International Journal of Green Energy 12(4): 339-346. Chen, H.H. and Lee, A. H. I. (2014) Comprehensive overview of renewable energy development in Taiwan. Renewable and Sustainable Energy Reviews 37: 215-228. Chen, W.H., Pen, B. L., Yu., C. T., and Hwang, W. S. (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology 102(3): 2916-2924. Chen, W.H., Peng, J., and Bi, X.T. (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 44: 847-866. Chen, W.H., Pen, B. L., Yu, C. T., and Hwang, W. S. (2017) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology 102(3): 2916-2924. Chen, Y. H. (2016) The torrefaction of waste bamboo chopsticks to manufacturing solid biofuel. Master Thesis from National Taiwan University. Taipei (Taiwan). Co., T.P., Coal standard of Taiwan Power Co. 2010: Taiwan. https://www.taipower.com.tw/tc/page.aspx?mid=197 Deng, J., Wang, G. J., Kuang, J. H., Zhang, Y. L., and Luo, Y. H. (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis 86(2): 331-337. Forestry Bureau. (2015). “Fourth Forest Resources Report”. https://www.forest.gov.tw/0002393 Ghasemi, Y., Rasoul-Amini, S., Naseri, A. T., Montazeri-Najafabady, N., Mobasher, M. A., and Dabbagh, F. (2012) Microalgae biofuel potentials. Applied Biochemistry and Microbiology 48(2): 126-144. Gomez, L. D., Steele-King, C., McQueen-Mason, S. J. (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist 178: 473-485. Hanzade, H. A., Serdar, Y., Sadriye, K. (2016) Combustion characteristics of torrefied biomass materials to generate power. The 4th IEEE International Conference on Smart Energy Grid Engineering. Oshawa (Canada). Hwuang, C. (2014) “The torrefaction of pulp industry waste to manufacture solid biofuel”, Master Thesis from National Taiwan University. Taipei (Taiwan). Iee Pellcert Europe (2012-2014): Standardizing Wood Pellets Trading in Europe; Laborelec. See http://www.laborelec.be/. International Energy Agency, World Energy Outlook 2000, IEA, Paris, 2000. Khezami, L., Chetouani, A., Taouk, B., and Capart, R. (2005) Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology 157: 48-56. Kleinschmidt, C.P. (2011) Overview of international developments in torrefaction. In: Proceedings of the IEA bioenergy task 32 and task 40 workshop, 2011. Graz, Austria Ko, C.H., Wang, Y. N., Chang, F. C., Chen, J. J., Chen, W. H., and Hwang, W. S. (2012) Potentials of lignocellulosic bioethanol produced from hardwood in Taiwan. Energy 44(1): 329-334. Kuo, P. C., Chen, W. H. (2011a) A study on torrefaction of various biomass materials and its impact onlignocellulosic structure simulated by athermogravimetry. Department of greenergy technology, National university of Tainan. Master thesis. Kuo, P. C., and Chen, W. H. (2011b) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2): 803-811. Kuo, P. C., and Chen, W. H. (2011c) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36(11): 6451-6460. Kurose, R., Ileda, M., Makino, H., Kimoto, M., and Miyazaki, T. (2004) Pulverized coal combustion characteristics of high-fuel-ratio coals. Fuel 83: 1777-1785. Limayem, A. and Ricke, S. C. (2012) Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science 38(4): 449-467. Liu, S.Y. and Lin, C. Y. (2009) Development and perspective of promising energy plants for bioethanol production in Taiwan. Renewable Energy 34(8): 1902-1907. Mohan, D., Pittman, C. U., and Steele, P. H. (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20: 848-889. Pérez, J., Muñoz-Dorado, J., Rubia, T. de la, Martínez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5(2): 53-63. Pimchuai, A., Dutta, A., and Basull, P. (2010) Torrefaction of agriculture residue to enhance combustible properites. Energy & Fuels 24: 4638-4645. Roni, M. S., Chowdhury, S., Mamun, S., Marufuzzaman, M., Lein, W., Johnson, S. (2017) Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renewable and Sustainable Energy Reviews 78: 1089-1101. Statistics Department of Ministry of Finance (2018). “Summary Statistics of Import and Export Trade'”. https://www.mof.gov.tw/List/Index?nodeid=103&ban=Y Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., and Chen X. (2017) Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews 74: 402-411. Van Der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., Ptasinski, K. J. (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass & Energy 35: 3748-3762. Wang, S., Dai, G., Ru, B., Zhao, Y., Wang, X., Zhou, J., Luo, Z., and Cen, K (2016) Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresource Technology 218: 1106-1114. Wang, S., Dai, G., Ru, B., Zhao, Y., Wang, X., Xiao, G., and Luo, Z. (2017) Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120: 864-871. Wang, S., Dai, G., Yang, H., and Luo, Z. (2017) Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62: 33-86. Wen, J. L., Sun, S. L., Yuan, T. Q., Xu, F., and Sun, R. C. (2014) Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy 121: 1-9. Wu, C. T. (2013) “Fuel properties of six torrefied Taiwanese bamboos”, Master Thesis from School of Forestry and Resource Conservation College of Bioresources and Agriculture in National Taiwan University, p.64-65. Yang, B. Y., Cheng, M. H., Ko, C. H., Wang, Y. N., Chen, W. H., Hwang, W. S., Yang, Y. P., Chen, H. T., and Chang, F. C. (2014) Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy 76: 59-65. Yang, H., Yang, R., Chen, H., Lee, D. H., and Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. I., and Weckhuysen,B. M. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110: 3552-3599. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21906 | - |
| dc.description.abstract | 生質物的組成分以纖維素、半纖維素與木質素為主,針對不同組成分在焙燒時所扮演的角色,對於焙燒結果將可能造成不同的影響,本研究探討不同組成分之間不同的含量在焙燒影響下的結果,討論組成分對焙燒產物的影響。
本研究選用四種不同的生質物,分別是微晶纖維素(Avicel)、刺竹、報紙與稻稈發酵廢渣,分別為纖維素含量高,一般生質物及木質素含量高的試材。經焙燒處理後,根據能量密度及質量殘留量結果顯示,四種生質物最佳焙燒溫度分別為310 oC、290 oC、290 oC及310 oC,持溫時間25、15、25及25 min. 木質素為酚醛聚合物的多醣細胞壁,故產生強大和耐久的穩定性,可抵抗焙燒反應溫度之預處理,纖維素因為葡葡萄糖以β-1,4鍵結,並利用氫鍵與其他微纖維鍵結成巨大分子,故穩定性次之,半纖維素為線性聚合物,往往替代其它糖側鏈以防止形成結晶結構,故穩定性最差。纖維素含量高的生質物Avicel及報紙,經由310 oC、25分鐘焙燒後,單位熱值由原本的4173.60及4256.73 kcal/kg,提升至4691.76及5105.09 kcal/kg,但重量損失則會過多。刺竹由原本的4627.27 kcal/kg,提升至6335.03 kcal/kg。發酵廢渣可由原本的4144.80 kcal/kg,提升至4392.64 kcal/kg,重量損失最低。由研究中可知,焙燒因為溫度提高造成生質物內部半纖維素、纖維素及木質素之熱降解反應。半纖維素含量高的生質物降解反應明顯,如竹子、報紙,隨溫度提升,生質物重量損失越多的趨勢。發酵廢渣木質素含量高,經焙燒後保留高熱值及高質量,但也因成分複雜需進一步處理。 高溫焙燒較不適合將此程序應用於預處理生質物之技術。若需保留較大量的生質物,應考慮以低溫焙燒以及α-cellulose和木質素含量較多的生質材料。而高溫焙燒雖然損失較多的生質物,但可將四種生質物熱值提升到6000 kcal/kg以上。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:52:27Z (GMT). No. of bitstreams: 1 ntu-107-R02625037-1.pdf: 4091891 bytes, checksum: 4228313040dbabea692812957ef6b635 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Figure Index V Table Index VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective 3 Chapter 2 Literature Review 4 2.1 Development and application of bioenergy in Taiwan 4 2.1.1 Biofuels 9 2.1.2 Power generation 11 2.2 Constituents of biomass 13 2.2.1 Constituents of biomass waste materials 13 2.2.2 Constituents of lignocellulose 14 2.3 Torrefaction 17 2.3.1 Principle 17 2.3.2 Mechanism 22 2.3.3 Relevant progress in torrefaction 24 2.3.4 Utilization 25 2.4 Torrefaction characterization of hemicellulose, cellulose and lignin 30 Chapter 3 Materials and Method 34 3.1 Material and equipment 34 3.1.1 Raw materials 34 3.1.2 Reagent chemicals 34 3.1.3 Equipment 35 3.1.4 Analyzers 36 3.2 Experiment process and analysis methods 36 3.2.1 Wood chemical composition analysis 38 3.2.2 Proximate analysis 41 3.2.3 Dry basis heating value analysis 42 3.2.4 Energy density 43 3.2.5 Ultimate analysis 43 3.2.6 Metal analysis 44 3.2.7 Thermogravimetric analysis (TGA) and simulated torrefaction 44 3.2.8 Air analysis 45 3.2.9 Liquid analysis 47 3.3 Torrefaction in tubular furnace 49 3.3.1 Experiment equipment 49 3.3.2 Conditions of experiment 49 3.3.3 System 49 3.3.4 Step 50 Chapter 4 Results and Discussion 52 4.1 Characteristics of raw biomass 52 4.1.1 Chemical components 52 4.1.2 Ultimate analysis 53 4.1.3 Higher heating value analysis 55 4.1.4 Ultimate analysis 56 4.1.5 Thermogravimetric analysis 57 4.2 Simulated torrefaction in TGA 62 4.3 Torrefaction in tubular furnace 66 4.3.1 Effects of torrefied temperature and residence time on mass loss 67 4.3.2 Effects of torrefied temperature and residence time on HHVt 69 4.3.3 Mass remain, energy yield, and energy densification 71 4.3.4 Best conditions of biomass 72 4.4 Analysis of solid product 74 4.5 Analysis of liquid product 78 4.6 Analysis of gas product 87 4.7 Comparison of weight remain from chemical composition 92 4.8 Comparison of HHVt from chemical composition 100 Chapter 5 Conclusion 103 Reference 104 Appendix 109 | |
| dc.language.iso | en | |
| dc.title | 生質物化學成分對焙燒之影響 | zh_TW |
| dc.title | Effects of Biomass Chemical Constitution on Torrefaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶源,藍浩繁,張家驥,張芳志 | |
| dc.subject.keyword | 生質物,焙燒,稻稈,發酵廢渣, | zh_TW |
| dc.subject.keyword | biomass,torrefaction,rice stalk,fermentation residue, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU201803991 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
