請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21869
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李士傑 | |
dc.contributor.author | Kuan-Yu Lai | en |
dc.contributor.author | 賴冠宇 | zh_TW |
dc.date.accessioned | 2021-06-08T03:50:38Z | - |
dc.date.copyright | 2018-10-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-10-08 | |
dc.identifier.citation | Ambros, V., 2004. The functions of animal microRNAs. Nature 431, 350-355.
Androvic, P., Valihrach, L., Elling, J., Sjoback, R., Kubista, M., 2017. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 45, e144. Angers, S., Thorpe, C.J., Biechele, T.L., Goldenberg, S.J., Zheng, N., MacCoss, M.J., Moon, R.T., 2006. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348-357. Asakawa, K., Suster, M.L., Mizusawa, K., Nagayoshi, S., Kotani, T., Urasaki, A., Kishimoto, Y., Hibi, M., Kawakami, K., 2008. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A. 105, 1255-1260. Bakkers, J., 2011. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91, 279-288. Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. Bhattacharya, M., Sharma, A.R., Sharma, G., Patra, B.C., Nam, J.S., Chakraborty, C., Lee, S.S., 2017. The crucial role and regulations of miRNAs in zebrafish development. Protoplasma 254, 17-31. Bienertova-Vasku, J., Novak, J., Vasku, A., 2015. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9, 221-234. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. Cheloufi, S., Dos Santos, C.O., Chong, M.M., Hannon, G.J., 2010. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584-589. Chen, J.F., Murchison, E.P., Tang, R., Callis, T.E., Tatsuguchi, M., Deng, Z., Rojas, M., Hammond, S.M., Schneider, M.D., Selzman, C.H., Meissner, G., Patterson, C., Hannon, G.J., Wang, D.Z., 2008. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 105, 2111-2116. Chen, P.Y., Manninga, H., Slanchev, K., Chien, M., Russo, J.J., Ju, J., Sheridan, R., John, B., Marks, D.S., Gaidatzis, D., Sander, C., Zavolan, M., Tuschl, T., 2005. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19, 1288-1293. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., Shiekhattar, R., 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744. Chiavacci, E., Dolfi, L., Verduci, L., Meghini, F., Gestri, G., Evangelista, A.M., Wilson, S.W., Cremisi, F., Pitto, L., 2012. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PloS one 7, e50536. Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., Wolfe, S.A., Giraldez, A.J., 2010. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694-1698. D'Aurizio, R., Russo, F., Chiavacci, E., Baumgart, M., Groth, M., D'Onofrio, M., Arisi, I., Rainaldi, G., Pitto, L., Pellegrini, M., 2016. Discovering miRNA Regulatory Networks in Holt-Oram Syndrome Using a Zebrafish Model. Front Bioeng Biotechnol 4, 60. Deacon, D.C., Nevis, K.R., Cashman, T.J., Zhou, Y., Zhao, L., Washko, D., Guner-Ataman, B., Burns, C.G., Burns, C.E., 2010. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development 137, 1887-1896. Drinnenberg, I.A., Weinberg, D.E., Xie, K.T., Mower, J.P., Wolfe, K.H., Fink, G.R., Bartel, D.P., 2009. RNAi in budding yeast. Science 326, 544-550. Espinoza-Lewis, R.A., Wang, D.Z., 2012. MicroRNAs in heart development. Curr Top Dev Biol 100, 279-317. Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews. Genetics 9, 102-114. Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W., Rajewsky, N., 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40, 37-52. Housley, M.P., Reischauer, S., Dieu, M., Raes, M., Stainier, D.Y., Vanhollebeke, B., 2014. Translational profiling through biotinylation of tagged ribosomes in zebrafish. Development 141, 3988-3993. Hutvagner, G., Simard, M.J., 2008. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9, 22-32. Jiang, J., Tang, S., Xia, J., Wen, J., Chen, S., Shu, X., Huen, M.S.Y., Deng, Y., 2018. C9orf140, a novel Axin1-interacting protein, mediates the negative feedback loop of Wnt/beta-catenin signaling. Oncogene 37, 2992-3005. Kim, V.N., Han, J., Siomi, M.C., 2009. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-139. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 203, 253-310. Kloosterman, W.P., Steiner, F.A., Berezikov, E., de Bruijn, E., van de Belt, J., Verheul, M., Cuppen, E., Plasterk, R.H., 2006. Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res 34, 2558-2569. Kwon, C., Han, Z., Olson, E.N., Srivastava, D., 2005. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proceedings of the National Academy of Sciences of the United States of America 102, 18986-18991. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., Tuschl, T., 2002. Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., Kim, V.N., 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., Kim, V.N., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060. Li, H., Fan, J., Yin, Z., Wang, F., Chen, C., Wang, D.W., 2016. Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget 7, 33-45. Lin, C.C., Chang, Y.M., Pan, C.T., Chen, C.C., Ling, L., Tsao, K.C., Yang, R.B., Li, W.H., 2014. Functional evolution of cardiac microRNAs in heart development and functions. Mol Biol Evol 31, 2722-2734. Liu, N., Bezprozvannaya, S., Williams, A.H., Qi, X., Richardson, J.A., Bassel-Duby, R., Olson, E.N., 2008. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22, 3242-3254. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., Kutay, U., 2004. Nuclear export of microRNA precursors. Science 303, 95-98. McFarlane, L., Svingen, T., Braasch, I., Koopman, P., Schartl, M., Wilhelm, D., 2011. Expansion of the Ago gene family in the teleost clade. Dev Genes Evol 221, 95-104. Miyasaka, K.Y., Kida, Y.S., Banjo, T., Ueki, Y., Nagayama, K., Matsumoto, T., Sato, M., Ogura, T., 2011. Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mech Dev 128, 18-28. Morton, S.U., Scherz, P.J., Cordes, K.R., Ivey, K.N., Stainier, D.Y., Srivastava, D., 2008. microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci U S A. 105, 17830-17835. Nishiyama, T., Kaneda, R., Ono, T., Tohyama, S., Hashimoto, H., Endo, J., Tsuruta, H., Yuasa, S., Ieda, M., Makino, S., Fukuda, K., 2012. miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish. Biochem Biophys Res Commun 425, 755-761. Peters, L., Meister, G., 2007. Argonaute proteins: mediators of RNA silencing. Mol Cell 26, 611-623. Poon, K.L., Brand, T., 2013. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013, 9-28. Sawamiphak, S., Kontarakis, Z., Filosa, A., Reischauer, S., Stainier, D.Y.R., 2017. Transient cardiomyocyte fusion regulates cardiac development in zebrafish. Nat Commun 8, 1525. Sayed, D., Abdellatif, M., 2011. MicroRNAs in development and disease. Physiol Rev 91, 827-887. Sluijter, J.P., van Mil, A., van Vliet, P., Metz, C.H., Liu, J., Doevendans, P.A., Goumans, M.J., 2010. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30, 859-868. Sokol, N.S., Ambros, V., 2005. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19, 2343-2354. Synnergren, J., Ameen, C., Lindahl, A., Olsson, B., Sartipy, P., 2011. Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiol Genomics 43, 581-594. Tajadini, M., Panjehpour, M., Javanmard, S.H., 2014. Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv Biomed Res 3, 85. Tanabe, H., Seki, M., Itoh, M., Deepak, A., Lal, P., Horiuchi, T., Suzuki, Y., Kawakami, K., 2016. Fluorescence-Activated Cell Sorting and Gene Expression Profiling of GFP-Positive Cells from Transgenic Zebrafish Lines. Methods Mol Biol 1451, 93-106. van Rooij, E., Quiat, D., Johnson, B.A., Sutherland, L.B., Qi, X., Richardson, J.A., Kelm, R.J., Jr., Olson, E.N., 2009. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17, 662-673. Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., Plasterk, R.H., 2005. MicroRNA expression in zebrafish embryonic development. Science 309, 310-311. Wienholds, E., Plasterk, R.H., 2005. MicroRNA function in animal development. FEBS Lett 579, 5911-5922. Wilfred, B.R., Wang, W.X., Nelson, P.T., 2007. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91, 209-217. Winter, J., Jung, S., Keller, S., Gregory, R.I., Diederichs, S., 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-234. Xu, X., Song, Y., Li, Y., Chang, J., Zhang, H., An, L., 2010. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 72, 149-156. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21869 | - |
dc.description.abstract | MicroRNA (miRNA) regulates gene expression by silencing target mRNAs, and is critical for various developmental processes including organogenesis. However, the regulatory networks of miRNAs in the development of different organs remain largely elusive, partly due to the technical difficulties in identifying organ-specific miRNAs. In particularly, the isolation of tissue-specific cells and associated miRNA is challenging due to the small size and tissue complexity in the developing organs like heart. Conventionally, fluorescence-activated cell sorting (FACS) is used to separate fluorescent cardiomyocytes (CM) from transgenic fish with a fluorescent heart. However, the FACS requires large number of embryos and tedious sorting procedures that often leads to cell damage and more critically results in the changes in miRNA/mRNA landscape. To address this question, I have established a novel method to isolate heart-specific miRNAs by Tandem Affinity Purification (TAP) of Argonaute 2 in zebrafish embryos. Using a binary Gal4-UAS system, our laboratory had previously generated a transgenic fish expressing GLUE-tagged Argonaute 2 (Ago2) driven by a UAS promoter, named Tg (UAS:H2A-mCherry-p2A-GLUE-ago2), and then it was crossed to a cardiac-specific Gal4 line, Tg (myl7:gal4) to become a double-transgenic fish expressing GLUE-Ago2 specifically in CMs. The Ago2 is a key component of the RNA-induced silencing complex which binds to mature miRNAs, while the GLUE contains affinity domains for TAP.
In this thesis, I optimized the purification procedures of TAP and successfully purified the GLUE-Ago2 protein with the associated miRNAs from zebrafish CMs at 24 h and 48 post fertilization (hpf), which are critical stages for zebrafish cardiac development. The Ago2-associated miRNAs were profiled by next generation sequencing (NGS). For technical comparison, I also collected CMs from the same transgenic line by FACS for miRNA profiling. NGS data revealed that currently known CM-specific miRNAs were identified by both methods, but the TAP appears to be superior because: (1) It requires only a quarter of the sample input compared to the FACS; (2) It has higher reads in low abundant miRNAs; (3) It only isolates mature miRNAs whereas the FACS obtains all small RNAs. Target gene prediction, gene ontology, and pathway analysis further revealed both known and potentially important regulatory networks in CM differentiation and maturation. Using quantitative real-time PCR, I found the expression of selected miRNAs with higher fold changes between 24 and 48 hpf was similar to their respective expression in FACS but much lower in TAP NGS data. The discrepancy will be discussed. The potential roles of candidate miRNAs and target genes in cardiogenesis will be evaluated in the future. Taken together, I demonstrate that the TAP is a valuable tool to identify those differentially expressed cardiac-specific miRNAs during development. This method can thus be potentially extended to study other tissues or organs with appropriate GAL4 driver available. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:50:38Z (GMT). No. of bitstreams: 1 ntu-107-R05b21017-1.pdf: 23661142 bytes, checksum: fa2f935e51afbf0d906a2e95ffc1efd9 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 2 Introduction 5 Biogenesis of microRNA 5 Roles of miRNAs in Cardiac Development and Function 6 Tandem affinity purification methods and application 9 Zebrafish as a model for cardiovascular research 11 Objectives of this study 12 Materials and Methods 13 Zebrafish maintenance and embryos collection 13 Generation of transgenic zebrafish lines 13 Plasmids constructions 14 Cell culture and transfection 14 Tandem-affinity purification of the Glue-Ago2 complex 15 Preparation of Glue-Ago2 protein 17 Western blot 17 Fluorescence-activated cell sorting (FACS) 18 Construction of cDNA libraries, sequencing, and analysis (NGS) 19 Statistical analysis 20 Results 21 Expression of the pGlue vector containing Ago2 and Tandem-Affinity Purification (TAP) of Ago2 in HEK293T cells 21 Generation, screening and validation of Tg (myl7: Gal4; UAS:H2A mCherry-GSG2A-Glue-Ago2) fish 22 Purification of Ago2 from Tg(GlueAgo2) embryos by Tandem-Affinity Purification 24 Sorting of mCherry-expressing heart cells by flow cytometry 27 Presence of cardiac-enriched miRNAs in samples collected by FACS and TAP 28 MicroRNAs profiling in TAP and FACS 29 Low sample variations between duplicates 30 MicroRNAs expression profile 31 Target gene prediction and functional annotation 32 Enrichment of mature functional miRNAs by TAP 34 Validation of candidate cardiac miRNAs expression 35 Discussion 36 References 42 Tables 48 Figures 63 | |
dc.language.iso | en | |
dc.title | 建立串聯親和性純化方法以偵測斑馬魚發育早期心臟專一性微型核糖核酸之圖譜變化 | zh_TW |
dc.title | Establishment of a Tandem-Affinity Purification method for the detection in changes of cardiac-specific miRNA profiling during early zebrafish development | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴時磊,蔡孟勳,周銘翊,朱家瑩 | |
dc.subject.keyword | 微型和糖核?酸,心臟發育,斑馬魚, | zh_TW |
dc.subject.keyword | miRNA,tandem affinity purification,Argonaute 2,cardiogenesis,GAL4-UAS,zebrafish, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201804186 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-10-09 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 23.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。