請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21852
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱靜雯(Ching-Wen Chiu) | |
dc.contributor.author | Chin-May Ngue | en |
dc.contributor.author | 魏清梅 | zh_TW |
dc.date.accessioned | 2021-06-08T03:49:46Z | - |
dc.date.copyright | 2018-11-29 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-11-26 | |
dc.identifier.citation | 1.4 References
1. S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Ohrstrom, M. O'Keeffe, M. P. Suh and J. Reedijk, CrystEngComm, 2012, 14, 3001-3004. 2. S. Seth and A. J. Matzger, Cryst. Growth Des., 2017, 17, 4043-4048. 3. (a) B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1990, 112, 1546-1554; (b) B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1989, 111, 5962-5964. 4. B. F. Abrahams, B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1991, 113, 3606-3607. 5. S. S. and Z. M. J., Angew. Chem. Int. Ed., 1995, 34, 2127-2129. 6. (a) O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705; (b) J. L. C. Rowsell, O. M. Yaghi, Microporous and Mesoporous Materials, 2004, 73, 3-14. 7. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319-330. 8. K. Susumu, K. Ryo and N. Shin‐ichiro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375. 9. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Chem. Soc. Rev., 2017, 46, 3242-3285. 10. Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815-5840. 11. O. Shekhah, J. Liu, R. A. Fischer and C. Woll, Chem. Soc. Rev., 2011, 40, 1081-1106. 12. D. Bradshaw, A. Garai and J. Huo, Chem. Soc. Rev., 2012, 41, 2344-2381. 13. L. Sun, S. S. Park, D. Sheberla and M. Dincă, J. Am. Chem. Soc., 2016, 138, 14772-14782. 14. R. J. Comito, K. J. Fritzsching, B. J. Sundell, K. Schmidt-Rohr and M. Dincă, J. Am. Chem. Soc., 2016, 138, 10232-10237. 15. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459. 16. Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315-1329. 17. S. M. Cohen, Chem. Rev., 2012, 112, 970-1000. 18. H. He, J. A. Perman, G. Zhu and S. Ma, Small, 2016, 12, 6309-6324. 19. S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44-53. 20. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724-781. 21. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem. Rev., 2012, 112, 782-835. 22. D. M. D'Alessandro, Chem. Commun., 2016, 52, 8957-8971. 23. I.-R. Jeon, L. Sun, B. Negru, R. P. Van Duyne, M. Dincă and T. D. Harris, J. Am. Chem. Soc., 2016, 138, 6583-6590 24. A. A. Karyakin, Electroanalysis, 2001, 13, 813–819. 25. D. Maspoch, D. Ruiz-Molina and J. Veciana, Chem. Soc. Rev., 2007, 36, 770–818. 26. B. Kong, C. Selomulya, G. F. Zheng and D. Y. Zhao, Chem. Soc. Rev., 2015, 44, 7997–8018. 27. M. B. Robin and P. Day, in Adv. Inorg. Chem. Radiochem., ed. H. J. Emele´us and A. G. Sharpe, Academic Press, 1968, vol. 10, pp. 247–422. 28. P. M. Usov, C. Fabian and D. M. D’Alessandro, Chem. Commun., 2012, 48, 3945–3947. 29. J. E. Halls, D. Jiang, A. D. Burrows, M. A. Kulandainathan and F. Marken, Electrochemistry, 2014, 12, 187–210. 30. T. B. Faust and D. M. D’Alessandro, RSC Adv., 2014, 4, 17498–17512. 31. M. Meilikhov, K. Yusenko and R. A. Fischer, Dalton Trans., 2010, 39, 10990– 10999. 32. C. K. Brozek and M. Dincă, J. Am. Chem. Soc., 2013, 135, 12886–12891. 33. S. R. Ahrenholtz, C. C. Epley and A. J. Morris, J. Am. Chem. Soc., 2014, 136, 2464– 2472. 34. T. C. Narayan, T. Miyakai, S. Seki and M. Dincă, J. Am. Chem. Soc., 2012, 134, 12932–12935. 35 S. S. Park, E. R. Hontz, L. Sun, C. H. Hendon, A. Walsh, T. Van Voorhis and M. Dincă, J. Am. Chem. Soc., 2015, 137, 1774–1777. 36. J. Ferraris, D. O. Cowan, V. Walatka and J. H. Perlstein, J. Am. Chem. Soc., 1973, 95, 948–949. 37. G. Saito and T. Murata, Philos. Trans. R. Soc., A, 2008, 366, 139–150. 38. S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi and H. Kitagawa, Inorg. Chem., 2009, 48, 9048. 39. L. E. Darago, M. L. Aubrey, C. J. Yu, M. I. Gonzalez and J. R. Long, J. Am. Chem. Soc., 2015, 137, 15703–15711. 40. C. Hua, P. W. Doheny, B. Ding, B. Chan, M. Yu, C. J. Kepert and D. M. D’Alessandro, J. Am. Chem. Soc., 2018, 140, 6622–6630. 41. J. E. Halls, D. Jiang, A. D. Burrows, M. A. Kulandainathan and F. Marken, Electrochemistry, 2014, 12, 187–210. 42. F. Scholz, L. Nitschke and G. Henrion, Electroanalysis, 1990, 2, 85–87. 43. A. M. Bond and F. Scholz, Langmuir, 1991, 7, 3197–3204. 44. C. R. Wade, M. Li and M. Dincă, Angew. Chem., Int. Ed., 2013, 52, 13377–13381. 45. C. F. Leong, B. Chan, T. B. Faust and D. M. D’Alessandro, Chem. Sci., 2014, 5, 4724– 4728. 46. S. Adeel, M. E. Abdelhamid, A. Nafady, Q. Li, L. L. Martin and A. M. Bond, RSC Adv., 2015, 5, 18384–18390. 47. S. M. Adeel, L. L. Martin and A. M. Bond, J. Solid State Electrochem., 2014, 18, 3287–3298. 48. S. V. Bhosale, C. H. Jani and S. J. Langford, Chem. Soc. Rev., 2008, 37, 331–342. 49. C. Hua and D. M. D’Alessandro, CrystEngComm, 2014, 16, 6331–6334. 50. C. Hua, P. Turner and D. M. D’Alessandro, Dalton Trans., 2013, 42, 6310–6313. 51. A. Das and D. M. D’Alessandro, CrystEngComm, 2015, 17, 706–718. 52. K. L. Mulfort and J. T. Hupp, J. Am. Chem. Soc., 2007, 129, 9604–9605. 53. C. F. Leong, T. B. Faust, P. Turner, P. M. Usov, C. J. Kepert, R. Babarao, A. W. Thornton and D. M. D’Alessandro, Dalton Trans., 2013, 42, 9831–9839. 54. Y.-S. Bae, B. G. Hauser, O. K. Farha, J. T. Hupp and R. Q. Snurr, Microporous Mesoporous Mater., 2011, 141, 231–235. 55. Y.-S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp and R. Q. Snurr, Langmuir, 2008, 24, 8592–8598. 56. K. L. Mulfort, T. M. Wilson, M. R. Wasielewski and J. T. Hupp, Langmuir, 2009, 25, 503–508. 57. 111 M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo and R. A. Fischer, Eur. J. Inorg. Chem., 2010, 3701–3714. 58. H. R. Moon, D. W. Lim and M. P. Suh, Chem. Soc. Rev., 2013, 42, 1807–1824. 59. C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha and J. T. Hupp, Chem. Mater., 2013, 25, 5012–5017. 60. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata and H. Nishihara, J. Am. Chem. Soc., 2013, 135, 2462– 2465. 61. T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. F. Wang, T. Hirahara, K. Ishizaka, S. Hasegawa, F. Liu and H. Nishihara, J. Am. Chem. Soc., 2014, 136, 14357–14360. 62. T. B. Faust, P. M. Usov, D. M. D’Alessandro and C. J. Kepert, Chem. Commun., 2014, 50, 12772–12774. 63. J. Cui and Z. Xu, Chem. Commun., 2014, 50, 3986–3988. 64. X.-Y. Li, Y.-G. Sun, P. Huo, M.-Y. Shao, S.-F. Ji, Q.-Y. Zhu and J. Dai, Phys. Chem. Chem. Phys., 2013, 15, 4016–4023. 65. Y. Kobayashi, B. Jacobs, M. D. Allendorf and J. R. Long, Chem. Mater., 2010, 22, 4120–4122. 66. D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik and M. Dincă, J. Am. Chem. Soc., 2014, 136, 8859–8862. 67. T. C. Narayan, T. Miyakai, S. Seki and M. Dincă, J. Am. Chem. Soc., 2012, 134, 12932–12935. 68. 132 W. Xia, A. Mahmood, R. Q. Zou and Q. Xu, Energy Environ. Sci., 2015, 8, 1837– 1866. 69. J. K. Sun and Q. Xu, Energy Environ. Sci., 2014, 7, 2071–2100. 70. I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, ACS Catal., 2015, 5, 6302–6309. 71. A. Morozan and F. Jaouen, Energy Environ. Sci., 2012, 5, 9269–9290. 72. K. Meyer, M. Ranocchiari and J. A. van Bokhoven, Energy Environ. Sci., 2015, 8, 1923–1937. 73. B. Bechlars, D. M. D’Alessandro, D. M. Jenkins, A. T. Iavarone, S. D. Glover, C. P. Kubiak and J. R. Long, Nat. Chem., 2010, 2, 362–368. 74. P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, Chem. Soc. Rev., 2014, 43, 5513–5560. 2.5 References 1. Z. Shi, Z. Pan, C. Zhang and H. Zheng, Dalton Trans., 2015, 44, 16854-16864. 2. R. I. Walton, Chem. Soc. Rev., 2002, 31, 230-238. 3. P. E, International Tables for Crystallography, IUCr, 2nd ed edn., 2006. 4. P. Muller, Crystal Structure Refinement: A Crystallographer's Guide to SHELXT, Oxford University Press, 2006. 5. G. Sheldrick, Acta Cryst., 2008, 64, 112-122. 6. H. P. K. Brandenburg, Journal, 2009, CRYSTAL IMPACT. 7. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr, 2006, 39, 453-457. 8. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi, J. Appl. Crystallogr, 1999, 32, 36-50. 9. I. F. D. H. Williams, Spectroscopic Methods in Organic Chemistry McGraw-Hill, 5th Ed edn., 1995. 10. D. J. Graham, Standard Operating Procedures for Cyclic Voltammetry, 2018. 11. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, Journal of Chemical Education, 2018, 95, 197-206. 12. http://www.ijcambria.com/Products.htm, 13. F. F. D. B. P. Zanello, C. Nervi, Inorganic Electrochemistry: Theory, Practice and Application, RSC Publishing, 2012. 14. D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical Chemistry, Thomson Brooks/Cole, 2004. 15. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309-319. 16. https://andyjconnelly.wordpress.com/2017/03/13/bet-surface-area/ 17. K. Gramm, L. Lundgren and O. Beckman, Physica Scripta, 1976, 13, 93-95. 18. J. C. Gallop and B. W. Petley, J. Phys. E: Sci. Instrum., 1976, 9, 417-429. 3.7 References 1. C. Lambert, W. Gaschler, E. Schmalzlin, K. Meerholz and C. Brauchle, J. Chem. Soc., Perkin Trans. 2, 1999, DOI: 10.1039/A808009G, 577-588. 2. C. Lambert and G. Nöll, J. Am. Chem. Soc., 1999, 121, 8434-8442. 3. C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor, N. E. Gruhn, J. C. Durivage and J.-L. Brédas, J. Am. Chem. Soc., 2005, 127, 8508-8516. 4. C. R. Wade, M. Li and M. Dinca, Angew Chem Int Ed Engl, 2013, 52, 13377-13381. 5. C. F. Leong, B. Chan, T. B. Faust and D. M. D'Alessandro, Chem. Sci., 2014, 5, 4724- 4728. 6. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2013, 42, 6310-6313. 7. C. Hua and D. M. D'Alessandro, CrystEngComm, 2014, 16, 6331-6334. 8. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2015, 44, 15297-15303. 9. C. Hua, A. Baldansuren, F. Tuna, D. Collison and D. M. D’Alessandro, Inorg. Chem., 2016, 55, 7270-7280. 10. C. Hua, B. F. Abrahams and D. M. D’Alessandro, Cryst. Growth Des., 2016, 16, 1149- 1155. 11. Z. Shi, Z. Pan, C. Zhang and H. Zheng, Dalton Trans., 2015, 44, 16854-16864. 12. Z. Shi, Z. Pan, H. Jia, S. Chen, L. Qin and H. Zheng, Cryst. Growth Des., 2016, 16, 2747-2755. 13. Z. Shi, L. Qin and H. Zheng, Dalton Trans., 2017, 46, 4589-4594. 14. Z.-Z. Shi, L. Qin and H.-G. Zheng, Inorganic Chemistry Communications, 2017, 79, 21-24. 15. M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani,, V. M. G.; Barone, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;, A. F. B. Izmaylov, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;, J. I. Hasegawa, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.,, J. E. O. J. A.; Peralta, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;, R. N. Kobayashi, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;, M. R. Cossi, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;, J. G. Jaramillo, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;, J. W. M. Ochterski, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;, J. J. D. Dannenberg, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and D. J. Fox, Gaussion 09, 2009. 16. S. Amthor, B. Noller and C. Lambert, Chem. Phys., 2005, 316, 141-152. 17. S. A. V. C. W. Tang, Appl. Phys. Lett., 1987, 51, 913-915. 18. C.-M. Ngue, C.-W. Chiu, G.-H. Lee, S.-M. Peng, M.-K. Leung, C.-I. Yang, Y.-H. Liu and K.-L. Lu, Dalton Trans., 2018, 47, 9341-9346. 19. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, A Comprehensive Text, Interscience, Canada, 4th ed edn., 1980. 20. B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley- VCH, New York, 2000. 21. B. J. Hathaway, J. Chem. Soc., Dalton Trans.,, 1972, DOI: 10.1039/DT9720001196, 1196-1199. 22. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910. 23. R. G. Compton, Angew. Chem. Int. Ed. 2009, 47, 9378. 24. W. Kaim, J. Fiedler, J. Chem. Soc. Rev., 2009, 38, 3372-3382. 25. M. Venturi, Notes Chem., 2012, 78, 209-225. 26. D. M. D'Alessandro, Chem. Commun., 2016, 52, 8957-8971. 27. P. G. Bruce, Solid State Electrochemicsty; University Press: Cambridge, U. K., 1995. 4.5 References 1. B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian and B. Chen, Adv. Mater., 2016, 28, 8819-8860. 2. J.-S. Qin, S. Yuan, Q. Wang, A. Alsalme and H.-C. Zhou, J. Mater. Chem. A, 2017, 5, 4280-4291. 3. D. M. D'Alessandro, Chem. Commun., 2016, 52, 8957-8971. 4. D. M. D'Alessandro, J. R. R. Kanga and J. S. Caddy, Aust. J. Chem., 2011, 64, 718. 5. C. R. Wade, M. Li and M. Dinca, Angew Chem Int Ed Engl, 2013, 52, 13377-13381. 6. C. F. Leong, B. Chan, T. B. Faust and D. M. D'Alessandro, Chem. Sci., 2014, 5, 4724-4728. 7. F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D'Alessandro and C. J. Kepert, Chem. - Eur. J. , 2014, 20, 17597-17605. 8. S. Amthor, B. Noller and C. Lambert, Chem. Phys., 2005, 316, 141-152. 9. C. Lambert, W. Gaschler, E. Schmalzlin, K. Meerholz and C. Brauchle, J. Chem. Soc., Perkin Trans. 2, 1999, DOI: 10.1039/A808009G, 577-588. 10. A. Heckmann and C. Lambert, Angew. Chem. Int. Ed., 2012, 51, 326-392. 11. A. F. Cozzolino, C. K. Brozek, R. D. Palmer, J. Yano, M. Li and M. Dincă, J. Am. Chem. Soc., 2014, 136, 3334-3337. 12. A. Spek, J. Appl. Crystallogr., 2003, 36, 7-13. 13. S. A. V. C. W. Tang, Appl. Phys. Lett., 1987, 51, 913-915. 14. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910. 15. S. M. Khan, H. Kitayama, Y. Yamada, S. Gohda, H. Ono, D. Umeda, K. Abe, K. Hata, and T. Ohba. J. Phys. Chem. C, 2018, 122, 24143-24149. 5.5 References 1. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477-1504. 2. S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44-53. 3. W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch and H.-C. Zhou, Chem. Soc. Rev., 2014, 43, 5561-5593. 4. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705. 5. M. L. Foo, R. Matsuda and S. Kitagawa, Chem. Mater., 2014, 26, 310-322. 6. D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and M. J. Rosseinsky, Acc. Chem. Res., 2005, 38, 273-282. 7. J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi, J. Am. Chem. Soc., 2004, 126, 5666-5667. 8. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459. 9. L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38, 1248-1256. 10. Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815-5840. 11. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Chem. Soc. Rev., 2017, 46, 3242-3285. 12. M. Kurmoo, Chem. Soc. Rev., 2009, 38, 1353-1379. 13. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem. Rev., 2012, 112, 1105-1125. 14. H. He, J. A. Perman, G. Zhu and S. Ma, Small, 2016, 12, 6309-6324. 15. M. Usman, S. Mendiratta and K. L. Lu, Adv. Mater., 2017, 29, 1605071. 16. J.-S. Qin, S. Yuan, Q. Wang, A. Alsalme and H.-C. Zhou, J. Mater. Chem. A, 2017, 5, 4280-4291. 17. D. M. D'Alessandro, Chem. Commun., 2016, 52, 8957-8971. 18. E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy and R. N. Adams, J. Am. Chem. Soc., 1966, 88, 3498-3503. 19. C. Lambert and G. Nöll, J. Am. Chem. Soc., 1999, 121, 8434-8442. 20. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2013, 42, 6310-6313. 21. C. Hua and D. M. D'Alessandro, CrystEngComm, 2014, 16, 6331-6334. 22. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2015, 44, 15297-15303. 23. Z. Shi, Z. Pan, C. Zhang and H. Zheng, Dalton Trans., 2015, 44, 16854-16864. 24. Z. Shi, Z. Pan, H. Jia, S. Chen, L. Qin and H. Zheng, Cryst. Growth Des., 2016, 16, 2747- 2755. 25. Z.-Z. Shi, L. Qin and H.-G. Zheng, Inorganic Chemistry Communications, 2017, 79, 21- 24. 26. S. Amthor, B. Noller and C. Lambert, Chem. Phys., 2005, 316, 141-152. 27. T.-W. Tseng, T.-T. Luo, Y.-R. Shih, J.-W. Shen, L.-W. Lee, M.-H. Chiang and K.-L. Lu, CrystEngComm, 2015, 17, 2847-2856. 28. A. Spek, J. Appl. Crystallogr, 2003, 36, 7-13. 29. S. Dapperheld, E. Steckhan, K. H. G. Brinkhaus and T. Esch, Chem. Ber., 1991, 124, 2557- 2567. 30. C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor, N. E. Gruhn, J. C. Durivage and J.-L. Brédas, J. Am. Chem. Soc., 2005, 127, 8508-8516. 31. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, A Comprehensive Text, Interscience, Canada, 4th ed edn., 1980. 32. C. Hua, B. F. Abrahams and D. M. D’Alessandro, Cryst. Growth Des., 2016, 16, 1149- 1155. 33. S. Goswami, G. Leitus, B. K. Tripuramallu and I. Goldberg, Cryst. Growth Des., 2017, 17, 4393-4404. 34. J.-Y. Tsao, J.-D. Tsai and C.-I. Yang, Dalton Trans., 2016, 45, 3388-3397. 35. R. L. Carlin and A. J. Van Duyneveldt, Acc. Chem. Res., 1980, 13, 231-236. 36. J. L. Manson, C. R. Kmety, F. Palacio, A. J. Epstein and J. S. Miller, Chem. Mater., 2001, 13, 1068-1073. 37. G. Sheldrick, Acta Cryst., 2008, 64, 112-122. 38. C. G. Zoski, Handbook of Electrochemistry, Elsevier, Amsterdam, The Netherlands, 2006. 39. P. M. Usov, C. Fabian and D. M. D'Alessandro, Chem. Commun., 2012, 48, 3945-3947. 6.6 References 1. S. Ma and H.-C. Zhou, Chem. Commun., 2010, 46, 44-53. 2. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477-1504. 3. J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869-932. 4. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Chem. Soc. Rev., 2017, 46, 3242-3285. 5. M. Kurmoo, Chem. Soc. Rev., 2009, 38, 1353-1379. 6. M. L. Foo, R. Matsuda and S. Kitagawa, Chem. Mater., 2014, 26, 310-322. 7. K. Susumu, K. Ryo and N. Shin‐ichiro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375. 8. Y.-N. Gong, D.-C. Zhong and T.-B. Lu, CrystEngComm, 2016, 18, 2596-2606. 9. J. Bai, H.-L. Zhou, P.-Q. Liao, W.-X. Zhang and X.-M. Chen, CrystEngComm, 2015, 17, 4462-4468. 10. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, A Comprehensive Text, Interscience, Canada, 4th ed edn., 1980. 11. C. Lambert, W. Gaschler, E. Schmalzlin, K. Meerholz and C. Brauchle, J. Chem. Soc., Perkin Trans. 2, 1999, DOI: 10.1039/A808009G, 577-588. 12. S. Amthor, B. Noller and C. Lambert, Chem. Phys., 2005, 316, 141-152. 13. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2013, 42, 6310-6313. 14. C. Hua and D. M. D'Alessandro, CrystEngComm, 2014, 16, 6331-6334. 15. C. Hua, P. Turner and D. M. D'Alessandro, Dalton Trans., 2015, 44, 15297-15303. 16. C. Hua, A. Baldansuren, F. Tuna, D. Collison and D. M. D’Alessandro, Inorg. Chem., 2016, 55, 7270-7280. 17. F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D'Alessandro and C. J. Kepert, Chem. - Eur. J., 2014, 20, 17597-17605. 18. C.-M. Ngue, C.-W. Chiu, G.-H. Lee, S.-M. Peng, M.-K. Leung, C.-I. Yang, Y.-H. Liu and K.-L. Lu, Dalton Trans., 2018, 47, 9341-9346. 19. Y.-X. Shi, W.-X. Li, W.-H. Zhang and J.-P. Lang, Inorg. Chem., 2018, 57, 8627-8633. 20. Y.-P. He, Y.-X. Tan and J. Zhang, Cryst. Growth Des., 2014, 14, 3493-3498. 21. J. J. Mihaly, M. Zeller and D. T. Genna, Cryst. Growth Des., 2016, 16, 1550-1558. 22. A. Spek, J. Appl. Crystallogr., 2003, 36, 7-13. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21852 | - |
dc.description.abstract | 摘要
本論文採用烏耳曼耦合反應(Ullmann coupling)合成以三苯胺為主的有機配子-tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine (TTPA)。TTPA有機配子具有電化學活性,藉由引入三苯胺和金屬離子可合成具可調控電化學性質的材料。在第三章,本論文將有機配子分別與金屬鹽類錳離子以及鈷離子進行反應,合成具有二維結構之有機金屬配位聚合物 [Mn(TTPA)Cl2·DMF]n (1) 和 {[Cu(TTPA)Cl2]·2DMF}n (2)。兩個化合物皆利用單晶X-ray繞射結果探討其晶體結構,並以固態電化學,氧化劑和電化學光譜探討化合物之物理性質。 本論文利用TTPA與具有不同羧酸根之有機配子與金屬鹽類配位聚合,可合成具有三維結構之有機金屬配位聚合物3-6。金屬錯合物不但保有TTPA有機配子之電化學活性,還更因結構不同,而具有不同性質。化合物{[Zn3(TTPA)2(DHTP)3]·2DMF}n (3) 結構穩定具有孔洞,對二氧化碳的捕捉表現優異。化合物3最特別的是,藉由氧化還原之電化學反應進一步調控固體螢光的開關。化合物 {[Co2(µ-OH2)(TTPA)(DTDN)2·DMF]·H2O}n (4) 因為採用了鈷金屬離子,導致其結構雙鈷配位而擁有磁性特徵。化合物{[Co(TTPA)(TDC)(H2O)]·2DMF}n (5) 和 {[Cd(TTPA)(TDC)]·2H2O}n (6) 分別利用鈷和鎘離子,在相同的反應溫度和溶劑環境下得到兩次互穿和四次互穿之結構。 | zh_TW |
dc.description.abstract | It is possible to alter the properties of redox-active materials by altering their redox state. The incorporation of a redox-active ligand in the construction of multifunctional materials has received limited attention despite the potentially high versatility. The tris(1,2,4-triazolphenyl)amine (TTPA) ligand with its triarylamine as a core is well-known for its redox and spectral properties. The TTPA ligand has significant potential for the development of coordination polymers where interplay exists between redox, optical, and host–guest properties. This thesis investigates the synthesis, design and physical properties of coordination polymers with TTPA incorporated within them.
Two dimensional coordination polymers can be achieved by merely incorporated the TTPA ligand with Cu2+ and Mn2+ metal ions to afford [MnTTPACl2·DMF]n (1) and {[CuTTPACl2]·2DMF}n (2). The redox-active behaviour of 1 and 2 was interrogated using chemical oxidants, solid state cyclic voltammetry and in situ solid state spectroelectrochemical techniques. Frameworks with higher dimensionality 3–6 can be obtained when the TTPA ligand is inserted with carboxylates as a co-ligand. Besides remained an electroactive framework, additional physical properties were observed and characterised. The robust and permanent porosity of {[Zn3(TTPA)2(DHTP)3]·2DMF}n (3), (DHTP = dihydroxyl terepthalic acid) is confirmed by gas adsorption measurements. Compound 3 has a Brunauer-Emmett-Teller (BET) surface area of 715.76 m2/g. 3 shows favorable interaction with carbon dioxide. One highlight of 3 is its photoluminescence intensity could be tuned “on” and “off”. {[Co2(µ-OH2)(TTPA)(DTDN)2·DMF]·H2O}n (4), (DTDN = dithiodinicotinic acid) constructed using Co2+ as the metal precursor, the binuclear centre of the framework allows for magnetic measurement. Magnetic studies indicated that 4 exhibits antiferromagnetic interactions and undergoes a field-induced spin-flop transition. {[Co(TTPA)(TDC)(H2O)]·2DMF}n (5), (TDC = thiophene dicarboxylate) and {[Cd(TTPA)(TDC)]·2H2O}n (6) were synthesised under same reaction conditions except for the use of different metal ions. The degree of interpenetration could be controlled by the metal ions as the sole reaction variable, and it subsequently influenced the coordination behaviour of TDC2– (thiophene dicarboxylate) ligand. Therefore 5 is 2-fold interpenetrated, and 6 is 4-fold interpenetrated. Spectral, fluorescence and host-guest properties of the frameworks were able to tune as a function of the redox state. In situ UV/Vis/NIR, fluorescence spectroelectrochemical techniques in both the solution and solid-states formed an integral part of the characterization of these compounds. The thesis describes a systematic approach towards the study of the fundamental and applied aspects of redox activity as a platform for multifunctional systems. The functionalities can be controlled and fine-tuned. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:49:46Z (GMT). No. of bitstreams: 1 ntu-107-D02223132-1.pdf: 9246661 bytes, checksum: 94fc598671be8256527ad3f2aa1f24e8 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENTS I
摘要 II ABSTRACT III LIST OF PUBLICATIONS V TABLE OF CONTENTS VI LIST OF FIGURES XII LIST OF SCHEMES XVIII LIST OF TABLES XIX 1 CHAPTER 1 INTRODUCTION 1 1.1 Objectives 1 1.2 Background 2 1.2.1 Nomenclature of metal–organic frameworks (MOFs)2 1.2.2 History of metal–organic frameworks (MOFs) 3 1.2.3 Current trends in metal–organic frameworks (MOFs) 5 1.3 Introduction of redox-active MOFs 7 1.3.1 Categories of redox-active MOFs 8 1.3.2 Redox activity and charge transfer MOFs 9 1.3.3 Methods to probe the redox activity in MOFs 12 1.3.4 Application of redox activity in MOFs: recent developments 15 1.3.4.1 Gas separations and storage 15 1.3.4.2 Electrochromic materials 16 1.3.4.3 Redox-active MOFs as conductors 17 1.3.4.4 Electrocatalysis 18 1.3.4.5 Multifunctionality: the interplay between redox activity and magnetism 19 1.3.5 Conclusions 19 1.4 References 20 2 CHAPTER 2 EXPERIMENTAL SECTION 25 2.1 Introduction 25 2.2 Synthesis 26 2.2.1 Tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine (TTPA) ligand synthesis 26 2.2.2 Crystallization 27 2.2.3 Water bath reaction 27 2.2.4 Solvothermal reaction 27 2.3 Characterization 28 2.3.1 Single-crystal X-ray diffraction 28 2.3.2 Powder X-ray diffraction 30 2.3.3 Fourier transform infrared spectroscopy 30 2.3.4 Thermogravimetry analysis 32 2.3.5 Elemental analysis 32 2.3.6 Solid-state cyclic voltammetry 32 2.3.7 UV-Vis NIR spectroscopy 33 2.3.8 In situ spectroelectrochemistry 34 2.3.9 Brunauer-Emmett-Teller (BET) analysis 36 2.3.9.1 The flow of BET measurement 39 2.3.9.2 Estimation of the isosteric heat of CO2 gas adsorption. 40 2.3.10 SQUID Magnetometer 41 2.3.10.1 Instrumentation 42 2.3.10.2 Measuring principle 43 2.3.10.3 Magnetic measurements 43 2.3.11 Fluorescence spectrophotometer 44 2.4 Chemical lists 45 2.5 References 46 3 CHAPTER 3 STRUCTURES, ELECTROCHEMICAL AND SPECTRAL PROPERTIES OF AN ELECTROACTIVE MN(II)/CU(II) FRAMEWORKS 48 3.1 Introduction 49 3.2 Experimental 51 3.2.1 Synthesis of framework [Mn(TTPA)Cl2·DMF]n (1) 51 3.2.2 Synthesis of framework {[Cu(TTPA)Cl2]·2DMF}n (2) 51 3.2.3 Ex-situ chemical oxidation of the framework 51 3.2.4 DFT calculations 52 3.2.5 Fluorescent measurements 52 3.3 Investigations of electronic properties of TTPA ligand 53 3.3.1 Electrochemistry of TTPA ligand 53 3.3.2 Absorption spectra of TTPA ligand 54 3.3.3 Fluorescence spectroelectrochemistry and chemical oxidation 55 3.3.4 HOMO and LUMO description of TTPA using DFT calculation. 57 3.3.5 In situ spectroelectrochemistry of TTPA 58 3.4 Results and discussions of [Mn(TTPA)Cl2·DMF]n (1) 59 3.4.1 Crystal structure description of 1 59 3.4.2 Electrochemical properties of 1 62 3.4.3 Ex-situ chemical oxidation 1 62 3.4.4 Solid-state in situ spectroelectrochemical measurement of 1 63 3.5 Results and discussion of {[Cu(TTPA)Cl2]·2DMF}n (2) 65 3.5.1 Crystal structure description of 2 65 3.5.2 Electrochemical properties of 2 68 3.5.3 Chemical oxidation and spectra properties of 2 69 3.5.4 Solid state in situ spectroelectrochemical measurement of 2 71 3.6 Conclusion 72 3.7 References 73 4 CHAPTER 4 AN ELECTROACTIVE ZN-MOF WITH MICROPOROUS AND FLUORESCENT SWITCHING PROPERTIES.76 4.1 Introduction 77 4.2 Experimental Part 78 4.2.1 Synthesis of {[Zn3(TTPA)2(DHTP)3]·2DMF}n (3). 78 4.2.2 Sample activation and adsorption measurement. 78 4.2.3 Estimation of the isosteric heat of CO2 gas adsorption. 79 4.2.4 Chemical oxidation 79 4.2.5 Fluorescent measurements 79 4.3 Results and Discussion of {[Zn3(TTPA)2(DHTP)3]·2DMF}n (3) 80 4.3.1 Structure description of 3 80 4.3.2 PXRD studies and thermal stabilities 83 4.3.3 Sorption studies 84 4.3.4 Fluorescence spectroelectrochemistry and chemical oxidation 88 4.3.5 Redox properties 89 4.4 Conclusion 90 4.5 References 90 5 CHAPTER 5 A CO(II) FRAMEWORK DERIVED FROM A REDOX-ACTIVE LINKER: ELECTROCHEMICAL AND MAGNETIC STUDY. 92 5.1 Introduction 93 5.2 Experimental Part 94 5.2.1 Synthesis of 4 94 5.2.2 Solid-state spectroelectrochemistry 94 5.2.3 Oxidation of the framework 95 5.3 Results and Discussion of 4 95 5.3.1 Preparation and structure of {[Co2(µ-OH2)(TTPA)(DTDN)2·DMF]·H2O}n 95 5.3.2 PXRD studies and thermal stability analysis 98 5.3.3 Electrochemical studies 99 5.3.4 Spectral studies 100 5.3.5 Magnetic studies 103 5.4 Conclusion 106 5.5 References 107 6 CHAPTER 6 AN INVESTIGATION OF CO(II)/CD(II) FRAMEWORKS INTERPENETRATION AND ELECTROACTIVE PROPERTIES BASED ON TTPA LIGAND. 110 6.1 Introduction 111 6.2 Experimental 112 6.2.1 Synthesis of {[Co(TTPA)(TDC)(H2O)]·2DMF}n (5) 112 6.2.2 Synthesis of {[Cd(TTPA)(TDC)]·2H2O}n (6)112 6.3 Synthesis and structures of 5 and 6 113 6.4 Redox properties 119 6.5 Conclusion 119 6.6 References 120 7 CHAPTER 7 SUMMARY AND CONCLUSION 122 8 APPENDICES I A.1 Crystals data and IR spectra i | |
dc.language.iso | en | |
dc.title | 以三苯胺爲主的有機配子之金屬配位聚合物的電化學研究和性質探討 | zh_TW |
dc.title | Redox-Active Coordination Polymers Constructed By
Tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine Ligand | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 呂光烈(Kuang-Lieh Lu) | |
dc.contributor.oralexamcommittee | 梁文傑(Man-Kit Leung),劉彥祥(Yen-Hsiang Liu),洪政雄(Chen-Hsiung Hun),黃鑑玉(Chien-Yu Huang) | |
dc.subject.keyword | 電化學活性,固態電化學,電化學光譜, | zh_TW |
dc.subject.keyword | redox active,cyclic voltammetry,spectroelectrochemical method, | en |
dc.relation.page | 156 | |
dc.identifier.doi | 10.6342/NTU201804300 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-11-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 9.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。