請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21825
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林發暄 | |
dc.contributor.author | Kuan-I Lu | en |
dc.contributor.author | 呂冠儀 | zh_TW |
dc.date.accessioned | 2021-06-08T03:48:31Z | - |
dc.date.copyright | 2019-01-15 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-01-08 | |
dc.identifier.citation | 1. Dunbar, R.I., The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 1998. 6(5): p. 178-190. 2. Premack, D. and G. Woodruff, Does the chimpanzee have a theory of mind? Behavioral and brain sciences, 1978. 1(4): p. 515-526. 3. Yirmiya, N., et al., Meta-analyses comparing theory of mind abilities of individuals with autism, individuals with mental retardation, and normally developing individuals. Psychological bulletin, 1998. 124(3): p. 283. 4. Mühlberger, A., et al., Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of neural transmission, 2009. 116(6): p. 735-746. 5. Blume, C., et al., EEG oscillations reflect the complexity of social interactions in a non-verbal social cognition task using animated triangles. Neuropsychologia, 2015. 75: p. 330-340. 6. Hamilton, L.S. and A.G. Huth, The revolution will not be controlled: natural stimuli in speech neuroscience. Language, Cognition and Neuroscience, 2018: p. 1-10. 7. Huk, A., K. Bonnen, and B.J. He, Beyond trial-based paradigms: Continuous behavior, ongoing neural activity, and natural stimuli. Journal of Neuroscience, 2018. 38(35): p. 7551-7558. 8. Hasson, U., R. Malach, and D.J. Heeger, Reliability of cortical activity during natural stimulation. Trends in cognitive sciences, 2010. 14(1): p. 40-48. 9. Sato, W. and S. Yoshikawa, Enhanced experience of emotional arousal in response to dynamic facial expressions. Journal of Nonverbal Behavior, 2007. 31(2): p. 119-135. 10. Sato, W., et al., Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Cognitive Brain Research, 2004. 20(1): p. 81-91. 11. Başar, E., et al., Gamma, alpha, delta, and theta oscillations govern cognitive processes. International journal of psychophysiology, 2001. 39(2-3): p. 241-248. 12. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 1999. 29(2-3): p. 169-195. 13. Jensen, O. and A. Mazaheri, Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience, 2010. 4: p. 186. 14. Klimesch, W., et al., Induced alpha band power changes in the human EEG and attention. Neuroscience letters, 1998. 244(2): p. 73-76. 15. Ray, W.J. and H.W. Cole, EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 1985. 228(4700): p. 750-752. 16. Hari, R., et al., Activation of human primary motor cortex during action observation: a neuromagnetic study. Proceedings of the National Academy of Sciences, 1998. 95(25): p. 15061-15065. 17. Engel, A.K., et al., Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends in neurosciences, 1992. 15(6): p. 218-226. 18. Tiitinen, H., et al., Selective attention enhances the auditory 40-Hz transient response in humans. Nature, 1993. 364(6432): p. 59. 19. Krämer, U.M., et al., Emotional and cognitive aspects of empathy and their relation to social cognition—an fMRI-study. Brain research, 2010. 1311: p. 110-120. 20. Redcay, E., et al., Live face-to-face interaction during fMRI: a new tool for social cognitive neuroscience. Neuroimage, 2010. 50(4): p. 1639-1647. 21. Vul, E., et al., Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on psychological science, 2009. 4(3): p. 274-290. 22. Kwong, K.K., et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 1992. 89(12): p. 5675-5679. 23. Belliveau, J., et al., Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991. 254(5032): p. 716-719. 24. Nunez, P.L. and R. Srinivasan, Electric fields of the brain: the neurophysics of EEG. 2006: Oxford University Press, USA. 25. Nie, D., et al. EEG-based emotion recognition during watching movies. in Neural engineering (NER), 2011 5th international IEEE/EMBS conference on. 2011. IEEE. 26. Aftanas, L. and S. Golosheykin, Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions. International Journal of Neuroscience, 2005. 115(6): p. 893-909. 27. Perry, A., L. Stein, and S. Bentin, Motor and attentional mechanisms involved in social interaction—Evidence from mu and alpha EEG suppression. Neuroimage, 2011. 58(3): p. 895-904. 28. Buzsáki, G. and A. Draguhn, Neuronal oscillations in cortical networks. science, 2004. 304(5679): p. 1926-1929. 29. Fender, D., Source localization of brain electrical activity. Handbook of electroencephalography and clinical neurophysiology, 1987: p. 355-403. 30. Michel, C.M., et al., EEG source imaging. Clinical neurophysiology, 2004. 115(10): p. 2195-2222. 31. Iacoboni, M., et al., Grasping the intentions of others with one's own mirror neuron system. PLoS biology, 2005. 3(3): p. e79. 32. Iacoboni, M., et al., Cortical mechanisms of human imitation. science, 1999. 286(5449): p. 2526-2528. 33. Bastiaansen, M.C., et al., I see what you mean: theta power increases are involved in the retrieval of lexical semantic information. Brain and language, 2008. 106(1): p. 15-28. 34. Helps, S.K., et al., Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain research, 2010. 1322: p. 134-143. 35. Suppanen, E., Inter-subject correlation of MEG data during movie viewing. 2014. 36. Thiede, A., Magnetoencephalographic (MEG) Inter-subject Correlation using Continuous Music Stimuli. 2014. 37. Hasson, U., et al., Intersubject synchronization of cortical activity during natural vision. science, 2004. 303(5664): p. 1634-1640. 38. Brant-Zawadzki, M., G.D. Gillan, and W.R. Nitz, MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology, 1992. 182(3): p. 769-775. 39. Sharbrough, F., American Electroencephalographic Society guidelines for standard electrode position nomenclature. J clin Neurophysiol, 1991. 8: p. 200-202. 40. Delorme, A. and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 2004. 134(1): p. 9-21. 41. Dale, A.M., B. Fischl, and M.I. Sereno, Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 1999. 9(2): p. 179-194. 42. Tadel, F., et al., Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience, 2011. 2011: p. 8. 43. Akalin-Acar, Z. and N.G. Gençer, An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. Physics in Medicine Biology, 2004. 49(21): p. 5011. 44. Gramfort, A., et al., OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomedical engineering online, 2010. 9(1): p. 45. 45. Lin, F.-H., et al., Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage, 2006. 31(1): p. 160-171. 46. Bernardino, A. and J. Santos-Victor. A real-time gabor primal sketch for visual attention. in Iberian Conference on Pattern Recognition and Image Analysis. 2005. Springer. 47. Fisher, R.A., Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 1915. 10(4): p. 507-521. 48. Fadiga, L. and L. Craighero, Hand actions and speech representation in Broca's area. Cortex, 2006. 42(4): p. 486-490. 49. Caplan, D., Why is Broca's area involved in syntax? Cortex, 2006. 42(4): p. 469-471. 50. Bechara, A., H. Damasio, and A.R. Damasio, Emotion, decision making and the orbitofrontal cortex. Cerebral cortex, 2000. 10(3): p. 295-307. 51. Goldberg, I.I., M. Harel, and R. Malach, When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron, 2006. 50(2): p. 329-339. 52. Bigler, E.D., et al., Superior temporal gyrus, language function, and autism. Developmental neuropsychology, 2007. 31(2): p. 217-238. 53. Hoffman, E.A. and J.V. Haxby, Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature neuroscience, 2000. 3(1): p. 80. 54. Fulton, J.F., A note on the definition of the “motor” and “premotor” areas. Brain, 1935. 58(2): p. 311-316. 55. Iwamura, Y., A. Iriki, and M. Tanaka, Bilateral hand representation in the postcentral somatosensory cortex. Nature, 1994. 369(6481): p. 554. 56. Grill-Spector, K. and R. Malach, The human visual cortex. Annu. Rev. Neurosci., 2004. 27: p. 649-677. 57. De Carli, D., et al., Identification of activated regions during a language task. Magnetic resonance imaging, 2007. 25(6): p. 933-938. 58. Pardo, J.V., et al., The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 1990. 87(1): p. 256-259. 59. Decety, J. and P.L. Jackson, The functional architecture of human empathy. Behavioral and cognitive neuroscience reviews, 2004. 3(2): p. 71-100. 60. Sergent, J., S. Ohta, and B. MACDONALD, Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain, 1992. 115(1): p. 15-36. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21825 | - |
dc.description.abstract | 本研究使用腦電圖(electroencephalography, EEG)研究人腦在自然狀況下如何處理社交相關的訊息。我們招募了17位健康受試者來觀看六部影片。影片分為三個場景下具有高社交或低社交互動。在觀看影片的同時,我們收取腦電圖訊號。訊號經由訊號源定位後,將神經活動分成theta、alpha、beta和gamma頻段的震盪。之後我們進行兩種分析。其一是比較神經活動震盪強度在觀看高和低社交影片的差異。其二是個體間相關性(inter-subject correlation, ISC) 在觀看高和低社交影片的差異。 結果顯示在觀看高低社交影片中,人腦振盪強度上各頻段都沒有顯著差異。而在ISC結果上,在低頻帶 (theta, alpha)上布洛卡氏區(Broca’s area)的同步性在觀看高社交影片比在觀看低社交影片來得高。而在高頻帶 (beta, gamma)上下顳葉(inferior temporal lobe),顳中回(middle temporal lobe) 的同步性在觀看高社交影片比在觀看低社交影片來得高。整體來說,神經震盪強度差異小的地方可能會有明顯的同步程度差異。這說明單看神經震盪強度大小可能會忽略人在認知過程中其實有相似腦波振盪變化過程。因此我們認為同時探討腦內皮質訊號源上的振盪強度和同步程度,有助於更精確瞭解人腦反應在處理自然複雜刺激下的認知過程。 | zh_TW |
dc.description.abstract | This research used electroencephalography (EEG) to study how human brain process social-related information in natural situation. Seventeen healthy participants were asked to watch six movies. The movies are divided into high and low sociality in each of three different scenes. EEG signal was recorded when participants watch movies. After estimating source location from EEG signal, the spectral powers of theta, alpha, beta, and gamma bands were estimated at each source location. Afterward, we compared intensity of oscillation during watching movies with high and low social interaction by average spectral power. We also compared the degree of synchronization in the process order of oscillation during watching high and low sociality movies among subjects by inter-subject correlation (ISC) coefficient. The results showed that the oscillation intensities were not significantly different at any frequency band between EEG sources of watching movies of high and of low sociality. On the other hand, there was higher EEG source synchronization during watching high sociality than low sociality movies at low frequency band (theta, alpha) in Broca’s area. This contrast in synchronization was also shown at high frequency band (beta, gamma) in inferior and middle temporal lobe. Our result demonstrated a case of oscillatory response that has low oscillation in intensity but has highly synchronized process order among people in natural situation. This indicate that social cognition might induce the low intensity but high synchronization of oscillation. Therefore, we believe that in addition to analyzing the power of oscillations, analyzing ISC of oscillations in the cortical source can provide more information of the cognitive processes evoked by complicated natural stimuli. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:48:31Z (GMT). No. of bitstreams: 1 ntu-107-R04548003-1.pdf: 4789891 bytes, checksum: bf3a40b900c086d4846dcadf75092f88 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 III Abstract IV Contents V List of Figures VI 1. Introduction 1 2. Method 5 2.1 Participants 5 2.2 Data Acquisition 5 2.3 Stimuli 6 2.4 Data Preprocessing 7 2.5 Source Localization 7 2.6 Power of Frequency Bands 8 2.7 Group analysis 8 2.8 Statistics 9 3. Results 11 3.1 Results of power percentage 11 3.2 ISCs results 39 4. Discussion Conclusion 75 Reference 77 | |
dc.language.iso | zh-TW | |
dc.title | 人腦在觀看高與低社交程度影片時的電生理反應 | zh_TW |
dc.title | Human brain electrophysiological responses during watching movies of high and low social interactions | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭文瑞,段正仁 | |
dc.subject.keyword | 腦電圖,神經震盪,自然刺激,個體間相關係數,定源分析, | zh_TW |
dc.subject.keyword | EEG,neural oscillation,natural stimuli,inter-subject correlation,source localization, | en |
dc.relation.page | 83 | |
dc.identifier.doi | 10.6342/NTU201900034 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-01-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。