請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21806
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉扶東 | |
dc.contributor.author | Fang-Yen Li | en |
dc.contributor.author | 李芳諺 | zh_TW |
dc.date.accessioned | 2021-06-08T03:47:39Z | - |
dc.date.copyright | 2019-03-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-01-23 | |
dc.identifier.citation | Reference
Aits S, Jaattela M, Nylandsted J. 2015. Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death. Methods Cell Biol, 126:261-285. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA, Bukanov NO, Drazek ES, Roe BA, Berg DE. 1998. Analyses of the cag pathogenicity island of Helicobacter pylori. Molecular microbiology, 28:37-53. Atherton JC. 2006. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol, 1:63-96. Backert S, Tegtmeyer N, Selbach M. 2010. The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter, 15:163-176. Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR, Naumann M, Meyer TF. 2000. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol, 2:155-164. Bagriacik EU, Kirkpatrick A, Miller KS. 1996. Glycosylation of native MHC class Ia molecules is required for recognition by allogeneic cytotoxic T lymphocytes. Glycobiology, 6:413-421. Bonifacino JS, Traub LM. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem, 72:395-447. Boya P, Kroemer G. 2008. Lysosomal membrane permeabilization in cell death. Oncogene, 27:6434-6451. Braulke T, Bonifacino JS. 2009. Sorting of lysosomal proteins. Biochimica et biophysica acta, 1793:605-614. Carlsson SR, Fukuda M. 1992. The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. Arch Biochem Biophys, 296:630-639. Chambers MG, Pyburn TM, Gonzalez-Rivera C, Collier SE, Eli I, Yip CK, Takizawa Y, Lacy DB, Cover TL, Ohi MD. 2013. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. Journal of molecular biology, 425:524-535. Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, et al. 2016. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Dev Cell, 39:13-27. Chen HY, Weng IC, Hong MH, Liu FT. 2014. Galectins as bacterial sensors in the host innate response. Curr Opin Microbiol, 17:75-81. Chen W, Stanley P. 2003. Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I. Glycobiology, 13:43-50. Cheng YL, Wu YW, Kuo CF, Lu SL, Liu FT, Anderson R, Lin CF, Liu YL, Wang WY, Chen YD, et al. 2017. Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus. MBio, 8. Chitcholtan K, Hampton MB, Keenan JI. 2008. Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori. Carcinogenesis, 29:2400-2405. Cover TL, Blaser MJ. 1992. Purification and characterization of the vacuolating toxin from Helicobacter pylori. The Journal of biological chemistry, 267:10570-10575. Dahms NM, Lobel P, Kornfeld S. 1989. Mannose 6-phosphate receptors and lysosomal enzyme targeting. The Journal of biological chemistry, 264:12115-12118. Davicino RC, Mendez-Huergo SP, Elicabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. 2017. Galectin-1-Driven Tolerogenic Programs Aggravate Yersinia enterocolitica Infection by Repressing Antibacterial Immunity. J Immunol, 199:1382-1392. de Bernard M, Burroni D, Papini E, Rappuoli R, Telford J, Montecucco C. 1998. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect Immun, 66:6014-6016. Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Ornatowski W, Vergne I, Deretic V. 2009. Autophagy and pattern recognition receptors in innate immunity. Immunol Rev, 227:189-202. Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 13:722-737. Diaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. 2018. Helicobacter pylori and Gastric Cancer: Adaptive Cellular Mechanisms Involved in Disease Progression. Front Microbiol, 9:5. Falcon B, Noad J, McMahon H, Randow F, Goedert M. 2018. Galectin-8-mediated selective autophagy protects against seeded tau aggregation. The Journal of biological chemistry, 293:2438-2451. Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K, Hayashi K, Simpson AJ, Rossi AG, Haslett C, et al. 2008. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol, 172:395-405. Feeley EM, Pilla-Moffett DM, Zwack EE, Piro AS, Finethy R, Kolb JP, Martinez J, Brodsky IE, Coers J. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proceedings of the National Academy of Sciences of the United States of America, 114:E1698-E1706. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, Capelinha AF, Quint W, Caldas C, van Doorn LJ, et al. 2002. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst, 94:1680-1687. Filomeni G, De Zio D, Cecconi F. 2015. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ, 22:377-388. Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ. 2006. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol, 8:44-54. Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F, Debatin KM, Fulda S. 2012. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ, 19:1337-1346. Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen EN, Spencer TE. 2004. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proceedings of the National Academy of Sciences of the United States of America, 101:7982-7987. Halder P, Datta C, Kumar R, Sharma AK, Basu J, Kundu M. 2015. The secreted antigen, HP0175, of Helicobacter pylori links the unfolded protein response (UPR) to autophagy in gastric epithelial cells. Cell Microbiol, 17:714-729. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ. 2010. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochimica et biophysica acta, 1800:181-189. Hernandez-Tiedra S, Fabrias G, Davila D, Salanueva IJ, Casas J, Montes LR, Anton Z, Garcia-Taboada E, Salazar-Roa M, Lorente M, et al. 2016. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 12:2213-2229. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, et al. 2002. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et biophysica acta, 1572:232-254. Hotta K, Funahashi T, Matsukawa Y, Takahashi M, Nishizawa H, Kishida K, Matsuda M, Kuriyama H, Kihara S, Nakamura T, et al. 2001. Galectin-12, an Adipose-expressed Galectin-like Molecule Possessing Apoptosis-inducing Activity. The Journal of biological chemistry, 276:34089-34097. Huff JL, Hansen LM, Solnick JV. 2004. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun, 72:5216-5226. Hughes RC. 1999. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et biophysica acta, 1473:172-185. Isomoto H, Moss J, Hirayama T. 2010. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. The Tohoku journal of experimental medicine, 220:3-14. Izzotti A, De Flora S, Cartiglia C, Are BM, Longobardi M, Camoirano A, Mura I, Dore MP, Scanu AM, Rocca PC, et al. 2007. Interplay between Helicobacter pylori and host gene polymorphisms in inducing oxidative DNA damage in the gastric mucosa. Carcinogenesis, 28:892-898. Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, et al. 2018. Galectins Control mTOR in Response to Endomembrane Damage. Mol Cell, 70:120-135 e128. Jones KR, Whitmire JM, Merrell DS. 2010. A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease. Front Microbiol, 1:115. Joshi S, Kumar S, Choudhury A, Ponnusamy MP, Batra SK. 2014. Altered Mucins (MUC) trafficking in benign and malignant conditions. Oncotarget, 5:7272-7284. Kaur J, Debnath J. 2015. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol, 16:461-472. Kim IJ, Lee J, Oh SJ, Yoon MS, Jang SS, Holland RL, Reno ML, Hamad MN, Maeda T, Chung HJ, et al. 2018. Helicobacter pylori Infection Modulates Host Cell Metabolism through VacA-Dependent Inhibition of mTORC1. Cell Host Microbe, 23:583-593 e588. Kimura M, Goto S, Wada A, Yahiro K, Niidome T, Hatakeyama T, Aoyagi H, Hirayama T, Kondo T. 1999. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb Pathog, 26:45-52. Kusters JG, van Vliet AH, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clinical microbiology reviews, 19:449-490. Laiko M, Murtazina R, Malyukova I, Zhu C, Boedeker EC, Gutsal O, O'Malley R, Cole RN, Tarr PI, Murray KF, et al. 2010. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3. Exp Cell Res, 316:657-666. Lim JW, Kim H, Kim KH. 2003. Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells. Int J Biochem Cell Biol, 35:1284-1296. Liu FT. 2000. Galectins: a new family of regulators of inflammation. Clinical immunology, 97:79-88. Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR, Jr. 1995. Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol, 147:1016-1028. Liu FT, Yang RY, Hsu DK. 2012. Galectins in acute and chronic inflammation. Annals of the New York Academy of Sciences, 1253:80-91. Liu L, Zhang N, Dou Y, Mao G, Bi C, Pang W, Liu X, Song D, Deng H. 2017. Lysosomal dysfunction and autophagy blockade contribute to IMB-6G-induced apoptosis in pancreatic cancer cells. Sci Rep, 7:41862. Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, et al. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J, 32:2336-2347. Mishra BB, Li Q, Steichen AL, Binstock BJ, Metzger DW, Teale JM, Sharma J. 2013. Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PloS one, 8:e59616. Mizushima N. 2007. Autophagy: process and function. Genes Dev, 21:2861-2873. Moutsatsos IK, Wade M, Schindler M, Wang JL. 1987. Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 84:6452-6456. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287:1497-1500. Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O. 2016. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori. Infect Immun, 84:1184-1193. Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, et al. 2010. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol, 12:530-544. Poppe M, Feller SM, Romer G, Wessler S. 2007. Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene, 26:3462-3472. Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. 2012. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol, 14:1657-1675. Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. 2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol, 168:1813-1822. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. 2002. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. The Journal of biological chemistry, 277:6775-6778. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. 2002. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular microbiology, 43:971-980. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, et al. 2010. Innate immune lectins kill bacteria expressing blood group antigen. Nat Med, 16:295-301. Subhash VV, Ho B. 2016. Galectin 3 acts as an enhancer of survival responses in H. pylori-infected gastric cancer cells. Cell Biol Toxicol, 32:23-35. Subhash VV, Ling SS, Ho B. 2016. Extracellular galectin-3 counteracts adhesion and exhibits chemoattraction in Helicobacter pylori-infected gastric cancer cells. Microbiology, 162:1360-1366. Suzuki O, Abe M. 2014. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans. Int J Oncol, 44:1433-1442. Tammer I, Brandt S, Hartig R, Konig W, Backert S. 2007. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology, 132:1309-1319. Telford JL, Ghiara P, Dell'Orco M, Comanducci M, Burroni D, Bugnoli M, Tecce MF, Censini S, Covacci A, Xiang Z, et al. 1994. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. The Journal of experimental medicine, 179:1653-1658. Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, Yoshimori T, Colombo MI, Jones NL. 2009. Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy, 5:370-379. Terman A, Kurz T, Gustafsson B, Brunk UT. 2008. The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev, 4:107-115. Terradot L, Waksman G. 2011. Architecture of the Helicobacter pylori Cag-type IV secretion system. The FEBS journal, 278:1213-1222. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 482:414-418. Walczak M, Martens S. 2013. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy, 9:424-425. Wang Y, Liu Y, Liu X, Jiang L, Yang G, Sun X, Geng C, Li Q, Yao X, Chen M. 2015. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells. Toxins (Basel), 7:3030-3044. Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT. 2018. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology, 28:392-405. Wroblewski LE, Peek RM, Jr., Wilson KT. 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clinical microbiology reviews, 23:713-739. Wu X, Jiang L, Sun X, Yao X, Bai Y, Liu X, Liu N, Zhai X, Wang S, Yang G. 2017. Mono(2-ethylhexyl) phthalate induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis in human endothelial cells. Food Chem Toxicol, 106:273-282. Yang Z, Klionsky DJ. 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 22:124-131. Yao X, Sha S, Wang Y, Sun X, Cao J, Kang J, Jiang L, Chen M, Ma Y. 2016. Perfluorooctane Sulfonate Induces Autophagy-Dependent Apoptosis through Spinster 1-Mediated lysosomal-Mitochondrial Axis and Impaired Mitophagy. Toxicol Sci, 153:198-211. Zhu P, Xue J, Zhang ZJ, Jia YP, Tong YN, Han D, Li Q, Xiang Y, Mao XH, Tang B. 2017. Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Dis, 8:3207. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21806 | - |
dc.description.abstract | 半乳糖凝集素,是會接上beta-galactoside的凝集素,已知會行使許多功能,包含影響細胞活化、生長與凋亡。近年來半乳糖凝集素也被發現在偵測到細菌引起的液泡破裂後會調控細胞自嗜。幽門螺旋桿菌是一種主要存在於胃中的細菌,一旦感染細胞後能夠活化細胞自嗜。在本篇論文中,我們意欲研究半乳糖凝集素-3和-8在胃上皮細胞受幽門螺旋桿菌感染時扮演的角色。我們發現當AGS胃上皮細胞株受此細菌感染後,細胞內的半乳糖凝集素-3和-8會有凝聚現象。特別的是這些凝聚的半乳糖凝集素在細胞中的定位在溶酶體,而且當抑制細胞O-聚醣合成時,它們的凝聚會明顯減少。這暗示幽門螺旋桿菌感染會造成溶酶體破損,以致於細胞質的半乳糖凝集素-3和-8辨識到暴露出來的O-聚醣而聚集在破損的溶酶體。而感染引發的半乳糖凝集素-8的凝聚可促進細胞自嗜。雖然感染引發的半乳糖凝集素-3的凝聚可能也有促進細胞自嗜的功能,我們發現只有在細胞沒有表現半乳糖凝集素-8時,這樣的功能性才會比較明顯。另外vacuolating cytotoxin A (VacA)是一種會對細胞造成孔洞的幽門螺旋桿菌細胞毒素。我們發現這個細胞毒素對感染造成的半乳糖凝集素-8的凝聚與增強的細胞自嗜反應有所貢獻。整體來說,我們的研究結果顯示半乳糖凝集素-3和-8在辨識到幽門螺旋桿菌造成的溶酶體破損後,會促進細胞自嗜反應,而VacA可能是感染引發溶酶體破損的一個重要因子。 | zh_TW |
dc.description.abstract | Galectins, beta-galactoside-binding lectins, are known to exert various functions, including cell activation, growth, and apoptosis. In recent years, galectins were shown to regulate cellular autophagy response after sensing bacteria-induced vacuole lysis. Helicobacter (H.) pylori is a bacterium majorly found in the stomach and capable of activating autophagy in infected cells. In this thesis, we investigated the role of galectin-3 and -8 in gastric epithelial cells upon exposure to H. pylori. We found that H. pylori coculture increases intracellular aggregation of galectin-3 and -8 in human-derived AGS gastric epithelial cells. Notably, both galectin aggregates colocalize with lysosomes, and their aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-3 and -8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates may enhance autophagy activity in infected cells. While H. pylori-elicited galectin-3 aggregates may also execute a function on potentiating autophagy response, this functional effect is apparent only when cells are devoid of galectin-8 expression. We also found autophagy plays a part in facilitating H. pylori-mediated galectin-8 aggregation. Additionally, vacuolating cytotoxin A (VacA), a pore-forming H. pylori cytotoxin, contributes to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, our results suggest that both galectin-3 and -8 promote host autophagy response following recognizing lysosomal injury induced by H. pylori, and that VacA may be a critical factor to destabilize lysosomal membrane during infection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:47:39Z (GMT). No. of bitstreams: 1 ntu-108-D00449002-1.pdf: 4637917 bytes, checksum: 0b7198b7e4bf0d0a46b730c15dec8096 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii Chapter 1. Introduction 1 1.1. Galectins 1 1.1.1 Bacteria infection regulates the expression and release of galectins 2 1.1.2 The role of galectins in the innate immunity against bacteria 3 1.1.2.1. The extracellular activities of galectins on bacteria 3 1.1.2.2. The intracellular activities of galectins on bacteria 4 1.2. Helicobacter pylori 5 1.2.1. Cytotoxin-associated gene A (CagA) 6 1.2.2. Vacuolating cytotoxin A (VacA) 7 1.3. Autophagy 8 Chapter 2. Specific aims 10 2.1. To investigate the role of galectin-8 in gastric epithelial cells during Helicobacter pylori infection 10 2.2. To investigate the role of galectin-3 in Helicobacter pylori-mediated autophagy in gastric epithelial cells 10 Chapter 3. Materials and Methods 12 3.1. Cell culture and generation of NDP52, galectin-3 or -8 knockdown cells 12 3.2. Generation of atg5 or galectin-8 knockout cells by CRISPR-Cas9 12 3.3. Bacterial growth and infection 13 3.4. Quantitative PCR 13 3.5. Drug treatment 14 3.6. Fluorescence microscopy 14 3.7. Immunoblot analysis 15 3.8. Lectin binding 16 3.9. Cathepsin B activity assay 17 3.10. Statistical analysis 17 Chapter 4. Results 19 4.1. The role of galectin-8 in gastric epithelial cells during Helicobacter pylori infection 19 4.1.1. H. pylori infection promotes intracellular galectin-8 aggregation in AGS gastric epithelial cells 19 4.1.2. H. pylori-induced intracellular galectin-8 aggregation is related to enhanced lysosomal damage 20 4.1.3. Host O-glycans are crucial for H. pylori-induced galectin-8 aggregation 21 4.1.4. Galectin-8 upregulates autophagy response in H. pylori-infected cells 22 4.1.5. Autophagy enhances galectin-8 aggregation in H. pylori-infected cells 23 4.1.6. NDP52 knockdown reduces H. pylori-mediated galectin-8 aggregation 24 4.1.7. VacA cytotoxin contributes to H. pylori-induced galectin-8 aggregation and autophagy upregulation 25 4.2. The role of galectin-3 in Helicobacter pylori-mediated autophagy in gastric epithelial cells 26 4.2.1. H. pylori infection promotes intracellular galectin-3 aggregation in AGS gastric epithelial cells 26 4.2.2. Host O-glycans are critical for H. pylori-mediated galectin-3 aggregation 26 4.2.3. Galectin-3 is not essential for H. pylori-induced autophagy 27 4.2.4. Galectin-8 develops more intracellular aggregates in galectin-3 knockdown cells during H. pylori infection 28 Chapter 5. Discussion 30 5.1. The role of galectin-8 in gastric epithelial cells during Helicobacter pylori infection 30 5.2. The role of galectin-3 in Helicobacter pylori-mediated autophagy in gastric epithelial cells 40 Chapter 6. Reference 46 Chapter 7. Figures 59 Figure 1. H. pylori infection downregulates galectin-8 protein levels in AGS gastric epithelial cells 59 Figure 2. H. pylori increases intracellular galectin-8 aggregation in infected cells 60 Figure 3. Temporal changes in galectin-8 aggregation in H. pylori-infected cells 61 Figure 4. A positive correlation between galectin-8 aggregation and bacterial moi in infected cells 62 Figure 5. Galectin-8 aggregates colocalize with lysosomes in H. pylori-infected cells 63 Figure 6. H. pylori infection increases cytosolic cathepsin B activity 64 Figure 7. Flow cytometry analysis of the efficacies of DMJ and BGN for inhibiting host glycan processing 65 Figure 8. Inhibition of O-glycan processing by BGN treatment decreases cell surface ligands recognized by galectin-8 66 Figure 9. Host O-glycans are crucial for H. pylori-induced galectin-8 aggregation 67 Figure 10. Galectin-8 aggregates colocalize with LC3 and NDP52 in H. pylori-infected cells 68 Figure 11. Galectin-8 upregulates autophagy activity in H. pylori-infected cells 69 Figure 12. Autophagy inhibition by 3-MA treatment reduces H. pylori-mediated galectin-8 aggregation 70 Figure 13. Autophagy blockage by atg5 knockout attenuates H. pylori-mediated galectin-8 aggregation 71 Figure 14. NDP52 depletion reduces H. pylori-mediated galectin-8 aggregation 72 Figure 15. H. pylori NCTC 11637 infection triggers intracellular galectin-8 aggregation in AGS cells 73 Figure 16. VacA contributes to H. pylori-mediated autophagy 74 Figure 17. VacA contributes to H. pylori-mediated galectin-8 aggregation 75 Figure 18. A proposed model of regulation of galectin-8 aggregation in H. pylori-infected AGS cells 76 Figure 19. H. pylori downregulates galectin-3 mRNA and protein levels in infected cells 77 Figure 20. H. pylori promotes galectin-3 aggregation in infected cells 78 Figure 21. Galectin-3 aggregates colocalize with lysosomes in H. pylori-infected cells 79 Figure 22. Host O-glycans are crucial for H. pylori-induced galectin-3 aggregation 80 Figure 23. Galectin-3 is not essential for H. pylori-mediated autophagy 81 Figure 24. Some of galectin-3 aggregates colocalize with those of galectin-8 in H. pylori-infected cells 82 Figure 25. Galectin-3 promotes H. pylori-mediated autophagy in galectin-8-deficient cells 83 Figure 26. H. pylori-induced galectin-8 aggregation is augmented in response to galectin-3 depletion 84 Figure 27. Galectin-3 depletion does not affect galectin-8 protein levels in H. pylori-infected cells 85 Figure 28. A model for explaining why galectin-3 depletion does not affect H. pylori-mediated autophagy 86 | |
dc.language.iso | en | |
dc.title | 探討幽門螺旋桿菌感染胃上皮細胞時半乳糖凝集素-3與-8在細胞自嗜所扮演的角色 | zh_TW |
dc.title | The role of galectin-3 and -8 in Helicobacter pylori-mediated autophagy in gastric epithelial cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 許秉寧,林國儀,吳明賢,林俊宏 | |
dc.subject.keyword | 細胞自嗜,半乳糖凝集素-3,半乳糖凝集素-8,幽門螺旋桿菌,溶?體, | zh_TW |
dc.subject.keyword | Autophagy,galectin-3,galectin-8,Helicobacter pylori,lysosome, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU201900140 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-01-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。