請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡明哲(Ming-Jer Tsai) | |
| dc.contributor.author | Zhu-An Yang | en |
| dc.contributor.author | 楊筑安 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:46:34Z | - |
| dc.date.copyright | 2019-02-14 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-09 | |
| dc.identifier.citation | 中華民國國家標準 CNS 11031 (2016) 結構用集成材。經濟部標準檢驗局。
中華民國國家標準 CNS 14630 (2017) 針葉樹結構用集成材。經濟部標準檢驗局。 中華民國國家標準 CNS 14995 (2015) 木材防腐劑。經濟部標準檢驗局。 中華民國國家標準 CNS-3000 (2015) 木材之加壓注入防腐處理方法。經濟部標準檢驗局。 中華民國國家標準 CNS-453 (2013) 木材抗壓試驗法。經濟部標準檢驗局。 中華民國國家標準 CNS-459 (2012) 木材尺度收縮率試驗法。經濟部標準檢驗局。 王松永 (2001) 木材物理學。國立編譯館。816頁。 王松永、丁昭義 (2006) 林產學。台灣商務印書館。283頁。 王松永(2006) 防腐防蟲蟻處理對大木構材物理與力學性質之影響,內政部建築研究所委託報告。 王松永、李長垚(1993)鉻化砷酸銅防腐劑處理對集成材之強度與膠合性質之影響。中華林學季刊 26(2):95-112。 王松永、蔡明哲 (2005) 古蹟與歷史建築物生物劣化之診斷與防治。林業研究專訊 12(5): 1-4。 吳順昭、黃彥三、高健章(1974) 強制振動法木材彈性模數之測定。中華林學季刊7(2):49-55。 李佳如、楊德新 (2010) 應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊32(4):45-60。 李佳如、林蘭東、林志憲、楊德新 (2016) 柳杉集成元之配置對結構用集成材抗彎性質之影響。林產工業35(1):11-20。 黃彥三、陳欣欣、漆陞中(1993)非破壞試驗技術應用於原木材質評估之可行性研究。林業試驗所研究報告季刊8(1):85-98。 周慧明(1989)木材防腐。中國林業出版社。北京。 林莉純 (2010) 新型防腐處理木橫擔之性能。國立宜蘭大學森林暨自然資源學系碩士論文。 林育群(2015)非破壞檢測技術應用於生態工程木構件之性質評估。國立中興大學森林暨自然資源學系碩士論文。 蔡如藩(1985) 木材力學性質。徐氏基金會,臺北,臺灣。pp.61-78。 蔡明哲、王松永、林振榮、楊德新、謝耀明、林蘭東 (2008) 防腐處理對古蹟修復用新木料物理與力學性質之影響。林產工業 27(2): 83-96。 葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。臺灣林業科學21(4):531-546。 鄭雅文、林蘭東、李佳如、楊德新(2016) 非破壞檢測技術應用於南方松木材彈性模數之探討。林業研究季刊38(4):241-252。 劉正字、李文昭、廖淑華(1 9 9 7) 低甲醛尿素膠用於纖維板製造之探討。林產工業1 6 (2) :78-90。 ASTM D143-94(2000)Standard test methods for small clear specimens of timber. 31 pp. ASTM D-245 (1999) Standard practice for establishing structural grades and related allowable properties for visually graded lumber. Philadelphia, PA. Bowyer, J. L., R. Shmulsky, J. G. Haygreen (2003) Forest Products and Wood Science, 4th Edition. Courchene, T., F. Lam and J. D. Barrett (1998) The effect of edge knots on the strength of SPFMSR lumber, For. Prod. J. 48(4): 75-81. Galligan, W.L., D.V., Snodgrass and G.W., Crow (1977) Machine stress rating: Practical concerns for lumber products. FPL-GTR-7. USDA Forest Serv., Forest Prod. Lab., Madison, Wis. Haines, D.W., Leban, J.M., 1997. Evaluation of the MOE of Norway spruce by the resonance flexure method. Forest Prod. J. 47, 91–93. Haines, D.W., Leban, J.M., Herbe, C., 1996. Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Sci. Technol. 30, 253–263. Halabe, U. B., G. M. Bidigalu, H. V. S.Gangarao and R. J. Ross (1997) Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Materials Eval. 55(9): 1013-1018. Hermamdez, R. and R.C., Moody (1996) Analysis of Glulam Timber Beans with Mechanically Graded (E-rated) Outer Laminatins. Proceeding of the international wood engineering conference, New Orleans, LA. Baton Rouge, LA: Louisiana State University: Vol. 1:144-150. Humar, M., B. Bucar, F. Pohleven and D. Zlindra (2008) Influence of ethanolamine on lignin depolymerization and copper leaching from impregnated wood. Wood Res 53:85–94. Humar, M., M. Petric, F. Pohleven and R. Destpot (2003) Upgrading of spruce wood with ethanolamine treatment. Holz Roh- Werkst 61:29–34. Hayashi, T. and A. Miyatake (2015) Recent research and development on sugi (Japanese cedar) structural glued laminated timber. J. Wood Sci. 61: 37-342. Ilic, J. (2001) Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz als Roh-und Werkstoff. 59: 169-175. k Johanson, C.J. (2002) Granding of timber with respect to mechanical properties. Timber engineering. Wiley, New York, pp. 23-43. Lee, J.J., J.S. Park, K.M. Kim, J.K. Oh (2005) Prediction of bending properties for structural glulam using optimized distributions of knot characteristics and lamina MOE. J. Wood Sci. 51:640-647. Posta, J., Ptacek, P., Jara, R., Terebesyova, M., Kuklik, P., Dolejs, J., 2016: Correlations and differences between methods for non-destructive evaluation of timber elements. Wood research 61(2): 129-140. Ross, R.J., Cooper, J., Wang, Z., 1991b. In-place evaluation of fire retardant treated wood products. In: Proceedings of the 8th International Nondestructive Testing of Wood Symposium, Pullman, WA, Washington State University, pp. 247–252. Ross, R.J., Geske, E.A., Larson, G.L., Murphy, J.F., 1991a. Transverse vibration nondestructive testing using a personal computer, Research Paper, FPL-RP-502, Forest Products Laboratory, Forest Service, US Department of Agriculture. Ross, R.J., Pellerin, R.F., 1991. Stress wave evaluation of green material: preliminary results using dimension lumber. Forest Prod. J. 41, 57–59. Sandoz, J. L. (1993) Valorization of Forest Products as Building Materials Using Nondestructive Testing. Proceeding of the 9th ISNTW, pp.103-109. Schad, K.C., Kretschmann, D.E., McDonald, K., Ross, R.J., Green,D.W., 1995. Stress Wave Techniques for Determining Quality of Dimension Lumber from Switch Ties, FPL-RN-0265. Forest Products Laboratory, Forest Service, US Department of Agriculture. Sobue, N., Mizukami, K. (1993) Resonance frequency of longitudinal vibration as a parameter for prediction of young’s modulus of structural timbers. J. Soc. Mat. Sci. 42: 121-125. Wagner, F. G., T. M. Gorman and S.Y. Wu. (2003) Assessment of intensive stress-wave scanning of Douglas-fir trees for predicting lumber MOE. For. Prod. J. 53(3): 36-39. Wang, S.Y., Chen, J.H., Tsai, M.J., Lin, C.J., Yang, T.H., 2008: Grading of softwood lumber using non-destructive techniques. Journal of materials processing technology208(1-3): 149-158. Winandy, J. E. (1995) Effects of waterborne preservative treatment on mechanical properties: a review. In: Proceedings of the American wood-preservers’association, vol 91, pp 17–33. Xu, P. (2002) Estimating the influence of knots on the local longitudinal stiffness in radiate pine structural timber. Wood Sci. Technol. 36: 501-509. Yang, T. H., C. H. Lin, S. Y. Wang and F. C. Lin (2012) Effect of ACQ preservative treatment on the mechanical properties of hardwood glulam. Eur. J. Wood Prod. 70:557–564. Yildiz, U.C., A. Temiz, E.D. Gezer and S. Yildiz (2004) Effects of the wood preservation on mechanical properties of yellow pine. Building and Environ. 39:1071-1075. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21782 | - |
| dc.description.abstract | 本研究以目視分等、超音波法、打音法及抗彎試驗評估杉木(China fir, Cunninghamia lanceolata)集成元各項非破壞性質及各項彈性模數之間相關性後,進行銅烷基銨化合物(Ammoniacal Copper Quaternary, ACQ)不同防腐藥劑注入量處理(K4、K5等級),並規劃同等級與異等級配置組合之集成材進行抗彎、膠合剪斷、煮沸剝離、縱向壓縮及尺寸安定性等試驗,藉此評估ACQ防腐處理與分級配置對杉木集成材之影響。試驗結果顯示未處理與防腐處理後之集成元利用非破壞試驗及抗彎試驗所得之動彈性模數(Dynamic modulus of elasticity, DOME)與靜彈性模數(Modulus of elasticity, MOE)之間相關性高,R2值為0.60~0.78,且DOME均高於MOE值(DMOEu>DMOEf>MOE),其中打音法所得之DMOEf更接近實際之MOE值(R2值0.78),防腐處理前與處理後之杉木均可利用非破壞試驗進行強度分等作業。
集成元經防腐處理有效吸收量達K4、K5等級後之平均MOE及DMOE值較對照組下降約±15 %。而同等級與異等級集成材在經過防腐處理後其抗彎破壞強度(Modulus of rupture, MOR)與MOE值均下降,經過統計分析後是無顯著差異的。以同等級集成材進行縱向壓縮試驗,防腐處理試材較未處理者下降25.63-32.18%,各組之間有顯著差異,由此顯示防腐處理對集成材之抗彎性質影響並不顯著但對抗壓性質則有影響。在尺寸安定性之試驗結果中防腐處理組與對照組間也無顯著差異。評估防腐處理前後各項性質,防腐處理影響並不顯著,所得試驗結果可提供杉木應用於結構用材設計使用參考。 另外同等級集成材之MOE與MOR大於異等級集成材,但經統計分析顯示皆無顯著差異。透過異等級結構用材配置,中間層以較低彈性模數集成元配置,仍符合CNS 11031結構用集成材強度標準,且可以有效利用中低等級之集成元,提升木材利用率。 | zh_TW |
| dc.description.abstract | The purpose of this study was to investigate and analysis the correlation between the dynamic and static bending properties of China fir (Cunninghamia lanceolata) laminae using visual grade method, ultrasonic wave method, tap tone method and static bending test. Laminae after ACQ preservative treatment (K4 and K5 grade) was to construct homogeneous and heterogeneous-grade structural glued laminated timber, and evaluate the effect of preservative treatment and laminae configuration on the bending properties, shear properties, delaminating properties, longitudinal compressive properties, radial and tangential shrinkage.
The correlation between the dynamic and static bending properties determined by non-destructive method and static bending test of control groups and ACQ-treated laminae was high (R2 = 0.60-0.78). The result also showed that the dynamic MOE is higher than the static MOE of laminae (DMOEu>DMOEf>MOE), however, the values of DMOEf determined by tap tone method were very close to the values of MOE. It is feasible to use the non-destructive method for mechanical grading of laminae and preservative treated laminae. The variation of the average MOE and DMOE values of ACQ preservative-treated laminae (K4 and K5 grade) compared with the control group were about ±15 %. The MOE and MOR of preservative-treated homogeneous and heterogeneous-grade structural glued laminated timber were lower than the control groups by about 12.06-20.13%. However, the differences of MOE and MOR values between preservative-treated groups and control groups were not significant according to ANOVA analysis. The longitudinal compressive strengths of preservative-treated homogeneous-grade glulam were lower than the control groups by about 25.63-32.18%, and there was a significant difference among preservative-treated groups and control groups. It is speculated that the effect of preservative treatment on the bending properties of glulam was not significant. The difference of the average radial and tangential shrinkages between most preservative-treated China fir laminae and control groups was not significant according to ANOVA analysis. To evaluate the physical properties and mechanical properties of China fir glulam, the effect of preservative treatment is not significant. And the result of this study maybe can provide reference for the use of China fir structural glued laminated timber. In addition, the MOE and MOR of homogeneous-grade structural glued laminated timber were higher than heterogeneous-grade structural glued laminated timber, but there was not a significant difference among homogeneous-grade glulam and heterogeneous-grade glulam. Design the configuration of heterogeneous-grade glulam, placing the laminae of lower MOE grades in the middle layer which strengths still can conform the standard of CNS 11031 structural glued-laminated timber. And it also can effectively utilize the medium-to-low grades laminae. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:46:34Z (GMT). No. of bitstreams: 1 ntu-108-R05625040-1.pdf: 2842881 bytes, checksum: f1cb43e1e28b61f7a2c6a86f5d96805e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌 謝 I
摘 要 II Abstract III 目 錄 V 圖 目 錄 VIII 表 目 錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 木材防腐藥劑 3 2.1.1 銅烷基銨化合物(Ammoniacal Copper Quaternary, ACQ) 5 2.2 木材防腐處理方法 6 2.3 木材使用環境與危害等級 7 2.4 防腐處理對木材物理性質影響 8 2.5 非破壞試驗應用於木材分等 11 2.6 分級配置對集成材之影響 14 第三章 材料與方法 15 3.1 試驗材料 15 3.1.1. 杉木集成元 15 3.1.2. 膠合劑 15 3.2 試驗流程 16 3.3 集成元分等 18 3.3.1 密度 18 3.3.2 目視分等 18 3.3.3 抗彎試驗 19 3.3.4 非破壞試驗 21 3.3.4.1. 超音波法 21 3.3.4.2. 打音法 22 3.4 ACQ防腐處理 23 3.4.1. 滲透度檢驗 23 3.4.2. 吸收量檢驗 24 3.5 集成材之製程 26 3.5.1. 集成元配置 26 3.5.2. 集成材膠合 27 3.5.3. 集成材甲醛檢驗 27 3.6 集成材物理性質試驗 28 3.6.1. 抗彎破壞試驗 28 3.6.2. 膠合剪斷試驗 29 3.6.3. 煮沸剝離試驗 29 3.6.4. 縱向壓縮強度試驗 30 3.6.5. 尺寸安定性 31 3.7 統計分析 32 第四章 結果與討論 33 4.1. 集成元性質 33 4.1.1. 集成元之基本性質 33 4.1.2. 集成元目視等級區分 34 4.1.3. 目視等級區分材之相關性分析 35 4.1.4. 集成元機械等級區分 37 4.1.5. 集成元之彈性模數 40 4.1.6. 音速與彈性模數之相關性分析 43 4.1.7. 密度與彈性模數相關性分析 44 4.1.8. 集成元各彈性模數相關性分析 46 4.2. 防腐處理後集成元性質 48 4.2.1. 防腐前後之木材性質 48 4.2.1.1. K4吸收量 48 4.2.1.2. K5吸收量 50 4.2.2. 防腐後各彈性模數之相關性分析 52 4.2.2.1. K4吸收量 52 4.2.2.2. K5吸收量 53 4.3. 集成材之抗彎性質 55 4.3.1. 防腐處理影響 55 4.3.2. 分級配置影響 59 4.3.3. 集成材破壞類型 60 4.4. 集成材之膠合剪斷 62 4.5. 集成材之剝離性質 64 4.6. 集成材之抗壓性質 66 4.7. 尺寸安定性 69 4.8. 各項檢驗 71 4.8.1. 防腐吸收量 71 4.8.2. 防腐滲透度 72 4.8.3. 甲醛釋出量 74 第五章 結論 75 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.title | 防腐藥劑處理對杉木集成材物理及力學性質影響 | zh_TW |
| dc.title | Effects of preservative treatment on the physical and mechanical properties of Cunninghamia lanceolata laminated timber | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊德新,林振榮 | |
| dc.subject.keyword | 杉木,集成元,非破壞試驗,銅烷基銨化合物,防腐處理,集成材,物理性質,力學性質, | zh_TW |
| dc.subject.keyword | Cunninghamia lanceolata,Laminae,Non-destructive test,Ammoniacal Copper Quaternary,Preservative treatment,Glulam,Physical properties,Mechanical properties, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201900407 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-02-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
