Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮南(Rong-Nan Huang)
dc.contributor.authorXoong Harng Oonen
dc.contributor.author溫松翰zh_TW
dc.date.accessioned2021-06-08T03:46:02Z-
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-12
dc.identifier.citationArumugam G, Swamy MK, Sinniah UR. 2016. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 21:369. doi: 10.3390/molecules21040369.
Aslan I, Ozbek H, Calmasur O, Sahin F. 2004. Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crop Prod 19: 167-173.
Baker RR, Bishop LJ. 2004. The pyrolysis of tobacco ingredients. J Anal Appl Pyrol 71: 223-311.
Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L. 2016. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci F 15: 143-182.
Basukriadi A, Wilkins RM. 2014. Oviposition deterrent activities of Pachyrhizus erosus seed extract and other natural products on Plutella xylostella (Lepidoptera: Plutellidae). J Insect Sci 14: 244. doi: 10.1093/jisesa/ieu106.
Behle RW, Flor-Weiler LB, Bharadwaj A, Stafford KC. 2011. A formulation to encapsulate nootkatone for tick control. J Med Entomol 48: 1120-1127.
Benavides S, Cortes P, Parada J, Franco W. 2016. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem 204: 77-83.
Benelli G, Flamini G, Canale A, Cioni PL, Conti B. 2012. Toxicity of some essential oil formulations against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Crop Prot 42: 223-229.
Bossou AD, Ahoussi E, Ruysbergh E, Adams A, Smagghe G, De Kimpe N, Avlessi F, Sohounhloue DCK, Mangelinckx S. 2015. Characterization of volatile compounds from three Cymbopogon species and Eucalyptus citriodora from Benin and their insecticidal activities against Tribolium castaneum. Ind Crop Prod 76: 306-317.
Brown WL, Eisner T, Whittaker RH. 1970. Allomones and kairomones: Transspecific chemical messengers. BioScience 20: 21-22.
Bruce TJA, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B, Prosser I, Smart LE, Wadhams LJ. 2005. Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag Sci 61: 1115-1121.
Buentello-Wong S, Galan-Wong L, Arevalo-Nino K, Almaguer-Cantu V, Rojas-Verde G. 2016. Toxicity of some essential oil formulations against the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae). Ind Crop Prod 85: 58-62.
Campolo O, Giunti G, Russo A, Palmeri V, Zappal L. 2018. Essential oils in stored product insect pest control. J Food Qual 2018: 18.
Carvalho IT, Estevinho BN, Santos L. 2016. Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. Int J Cosmetic Sci 38: 109-119.
Chae SH, Kim SI, Yeon SH, Perumalsamy H, Ahn YJ. 2014. Fumigant toxicity of summer savory and lemon balm oil constituents and efficacy of spray formulations containing the oils to B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 107: 286-292.
Chan ES. 2011. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohyd Polym 84: 1267-1275.
Chaubey MK. 2012. Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. (Coleoptera: Curculionidae). Biol Agric Hortic 28: 111-119.
Chen ZY, Guo SS, Cao JQ, Pang X, Geng ZF, Wang Y, Zhang Z, Du SS. 2018. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int J Food Prop 21: 2265-2275.
Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J. 2004. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: Active or passive process? J Chem Ecol 30: 1305-1317.
Choi WS, Park BS, Ku SK, Lee SE. 2002. Repellent activities of essential oils and monoterpenes against Culex pipiens pallens. J Am Mosquito Contr Assoc 18: 348-351.
Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ. 2013. Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci 78: 709-714.
Coats JR, Karr LL, Drewes CD. 1991. Toxicity and neurotoxic effects of monoterpenoids - in insects and earthworms. ACS Symp Ser 449: 305-316.
Das K, Vasudeva C, Dang R. 2016. Economical novel formulation and evaluation of herbal oils for mosquito and house fly repellent activities. Ann Phytomedicine 5: 91-96.
Davies NW. 1990. Gas-chromatographic retention indexes of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20m phases. J Chromatogr 503: 1-24.
de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. 2014. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol Adv 32: 1550-1561.
Degenhardt J, Gershenzon J, Baldwin IT, Kessler A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotech 14: 169-176.
Delfosse ES, Perkins BD. 1977. Discovery and bioassay of a kairomone from Waterhyacinth, Eichhornia crassipes (Farinosae: Pontederiaceae). Fla Entomol 60: 217-222.
El Asbahani A, Miladi K, Badri W, Sala M, Addi EHA, Casabianca H, El Mousadik A, Hartmann D, Jilale A, Renaud FNR, Elaissari A. 2015. Essential oils: From extraction to encapsulation. Int J Pharmaceut 483: 220-243.
Eliopoulos PA, Hassiotis CN, Andreadis SS, Porichi AEE. 2015. Fumigant toxicity of essential oils from basil and spearmint against two major pyralid pests of stored products. J Econ Entomol 108: 805-810.
Erland LAE, Rheault MR, Mahmoud SS. 2015. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop Prot 78: 20-26.
Farzadfar S, Pourrahim R, Golnaraghi AR, Ahoonmanesh A. 2005. Occurrence of Cauliflower mosaic virus in different cruciferous plants in Iran. Plant Pathol 54: 810-810.
Fenton B, Kasprowicz L, Malloch G, Pickup J. 2010. Reproductive performance of asexual clones of the peach-potato aphid, (Myzus persicae, Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology. Bull Entomol Res 100: 451-460.
Flint HM, Salter SS, Walters S. 1979. Caryophyllene: an attractant for the green lacewing. Environ Entomol 8: 1123-1125.
Furlong MJ, Wright DJ, Dosdall LM. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58: 517-541.
Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int 40: 1107-1121.
Hari BNV, Praneetha T, Prathyusha T, Mounika K, Devi DR. 2012. Development of starch-gelatin complex microspheres as sustained release delivery system. Res J Chem Environ 16: 73-78.
Hilker M, Kobs C, Varama M, Schrank K. 2002. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205: 455-461.
Hori M. 1996. Settling inhibition and insecticidal activity of garlic and onion oils against Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl Entomol Zool 31: 605-612.
Inazuka S. 1982. Cockroach repellents contained in oils of Japanese mint and Scotch spearmint. J Pestic Sci 7: 145-154.
Isman MB. 2004. Plant essential oils as green pesticides for pest and disease management. ACS Sym Ser 887: 41-51.
Khani A, Heydarian M. 2014. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med 7: 956-961.
Kim IH, Han J, Na JH, Chang PS, Chung MS, Park KH, Min SC. 2013. Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies. J Food Sci 78: E229-E237.
Kim IH, Song AY, Han J, Park KH, Min SC. 2014. Indian meal moth (Plodia interpunctella) resistant food packaging film development using microencapsulated cinnamon oil. J Food Sci 79: E2023-E2030.
Kimling MC, Caruso RA. 2012. Sol-gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J Mater Chem 22: 4073-4082.
Klocke JA, Balandrin MF, Barnby MA, Yamasaki RB. 1989. Limonoids, phenolics, and furanocoumarins as insect antifeedants, repellents, and growth inhibitory compounds. ACS Symp Ser 387: 136-149.
Ko LT, Fang JL. 1979. Studies on the biology of the diamondback moth, Plutella xylostella L. life-history, annual generations and temperature relations. Acta Entomol Sinica 22: 310-319.
Kolanowski W, Ziolkowski M, Weissbrodt J, Kunz B, Laufenberg G. 2006. Microencapsulation of fish oil by spray drying-impact on oxidative stability. Part 1. Eur Food Res Technol 222: 336-342.
Koul O, Singh R, Kaur B, Kanda D. 2013. Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Ind Crop Prod 49: 428-436.
Kumrungsee N, Pluempanupat W, Koul O, Bullangpoti V. 2014. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. J Pest Sci 87: 721-729.
Lee JH, Kim JR, Koh YR, Ahn YJ. 2013. Contact and fumigant toxicity of Pinus densiflora needle hydrodistillate constituents and related compounds and efficacy of spray formulations containing the oil to Dermatophagoides farinae. Pest Manag Sci 69: 696-702.
Licciardello F, Muratore G, Suma P, Russo A, Nerin C. 2013. Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum). Innov Food Sci Emerg 19: 173-180.
Llorens E, Armelin E, Perez-Madrigal MD, del Valle LJ, Aleman C, Puiggali J. 2013. Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 5: 1115-1157.
Lopez S, Lima B, Aguero MB, Lopez ML, Hadad M, Zygadlo J, Caballero D, Stariolo R, Suero E, Feresin GE, Tapia A. 2018. Chemical composition, antibacterial and repellent activities of Azorella trifurcata, Senecio pogonias, and Senecio oreophyton essential oils. Arab J Chem 11: 181-187.
Mahmoudvand M, Abbasipour H, Basij M, Hosseinpour MH, Rastegar F, Nasiri MB. 2011. Fumigant toxicity of some essential oils on adults of some stored-product pests. Chil J Agric Res 71: 83-89.
Maji TK, Baruah I, Dube S, Hussain MR. 2007. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technol 98: 840-844.
Martins IM, Barreiro MF, Coelho M, Rodrigues AE. 2014. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem Eng J 245: 191-200.
Martins IM, Rodrigues SN, Barreiro F, Rodrigues AE. 2009. Microencapsulation of thyme oil by coacervation. J Microencapsul 26: 667-675.
Mérey Gv, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D’Alessandro M. 2011. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72: 1838-1847.
Misharina TA. 2001. Influence of the duration and conditions of storage on the composition of the essential oil from coriander seeds. Appl Biochem Microbiol 37: 622-628.
Mossa ATH. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. Environ Sci Technol 9: 354-378.
Mouffok M, Mesli A, Abdelmalek I, Gontier E. 2016. Effect of the formulation parameters on the encapsulation efficiency and release behavior of p-aminobenzoic acid-loaded ethylcellulose microspheres. J Serb Chem Soc 81: 1183-1198.
Naik DG, Puntambekar H, Anantpure P. 2010. Essential oil of Terminalia chebula fruits as a repellent for the Indian honeybee Apis florea. Chem Biodivers 7: 1303-1310.
Ng JCK, Perry KL. 2004. Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5: 505-511.
Ngamo TSL, Ngatanko I, Ngassoum MB, Mapongmestsem PM, Hance T. 2007. Persistence of insecticidal activities of crude essential oils of three aromatic plants towards four major stored product insect pests. Afr J Agric Res 2: 173-177.
Pavela R. 2008. Acute and synergistic effects of some monoterpenoid essential oil compounds on the house fly (Musca domestica L.). J Essent Oil Bear Pl 11: 451-459.
Regnault-Roger C. 1997. The potential of botanical essential oils for insect pest control. J Integr Pest Manag 2: 25-34.
Ribeiro WLC, Macedo ITF, dos Santos JML, de Oliveira EF, Camurca-Vasconcelos ALF, de Paula HCB, Bevilaqua CML. 2013. Activity of chitosan-encapsulated Eucalyptus staigeriana essential oil on Haemonchus contortus. Exp Parasitol 135: 24-29.
Rojas-Moreno S, Osorio-Revilla G, Gallardo-Velazquez T, Cardenas-Bailon F, Meza-Marquez G. 2018. Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. J Microencapsul 35: 165-180.
Rowshan V, Bahmanzadegan A, Saharkhiz MJ. 2013. Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Ind Crop Prod 49: 97-101.
Salamci E, Aslan I, Calmasur O, Kazaz C. 2009. Fumigant toxicity of nobornanegtetraacetate, cyclooctanetetracetate and 7-oxanorbornene deravative against the stored product insect pest Sitophilus granarius (L.). Fresen Environ Bull 18: 642-646.
Sarfraz M, Dosdall LM, Keddie BA. 2006. Diamondback moth-host plant interactions: Implications for pest management. Crop Prot 25: 625-639.
Sarfraz M, Keddie AB, Dosdall LM. 2005. Biological control of the diamondback moth, Plutella xylostella: A review. Biocontrol Sci Technol 15: 763-789.
Sarfraz M, Keddie BA. 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep., Plutellidae). J Appl Entomol 129: 149-157.
Scalerandi E, Flores GA, Palacio M, Defago MT, Carpinella MC, Valladares G, Bertoni A, Palacios SM. 2018. Understanding synergistic toxicity of terpenes as insecticides: contribution of metabolic detoxification in Musca domestica. Front Plant Sci 9:1579. doi: 10.3389/ fpls. 2018.01579.
Sharaby A, Abdel-Rahman H, Moawad S. 2009. Biological effects of some natural and chemical compounds on the potato tuber moth, Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae). Saudi J Biol Sci 16: 1-9.
Shen Z, Kamdem DP. 2015. Development and characterization of biodegradable chitosan films containing two essential oils. Int J Biol Macromol 74: 289-296.
Silva DB, Weldegergis BT, Van Loon JJA, Bueno VHP. 2017. Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J Chem Ecol 43: 53-65.
Sousa FL, Santos M, Rocha SM, Trindade T. 2014. Encapsulation of essential oils in SiO2 microcapsules and release behaviour of volatile compounds. J Microencapsul 31: 627-635.
Specos MMM, Garcia JJ, Tornesello J, Marino P, Della Vecchia M, Tesoriero MVD, Hermida LG. 2010. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans Roy Soc Trop Med Hyg 104: 653-658.
Su LC. 2012. Repellent activity and application of plant essential oils against cat flea (Ctenocephalides felis) [master thesis]. Taipei, Taiwan: National Taiwan University. 65 pp.
Tjallingii WF. 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57: 739-745.
Tomova BS, Waterhouse JS, Doberski J. 2005. The effect of fractionated Tagetes oil volatiles on aphid reproduction. Entomol Exp Appl 115: 153-159.
Tonon RV, Grosso CRF, Hubinger MD. 2011. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res Int 44: 282-289.
Turek C, Stintzing FC. 2012. Impact of different storage conditions on the quality of selected essential oils. Food Res Int 46: 341-353.
Turek C, Stintzing FC. 2013. Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12: 40-53.
Turlings TCJ, Ton J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9: 421-427.
Usai M, Marchetti M, Foddai M, Del Caro A, Desogus R, Sanna I, Piga A. 2011. Influence of different stabilizing operations and storage time on the composition of essential oil of thyme (Thymus officinalis L.) and rosemary (Rosmarinus officinalis L.). Lwt - Food Sci Technol 44: 244-249.
Vaidya S, Bhosale R, Singhal RS. 2006. Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Dry Technol 24: 983-992.
Van Tol RWHM, Van Der Sommen ATC, Boff MIC, Van Bezooijen J, Sabelis MW, Smits PH. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4: 292-294.
Wagan TA, He YP, Cai WL, Zhao J, Hua HX. 2016. Fumigant and contact toxicity and oviposition deterrent effects of plant essential oils on Bemisia tabaci (Hemiptera: Aleyrodidae). Fla Entomol 99: 673-677.
Wyss U, Poehling HM. 2001. Multitrophic interactions between plants, herbivores and their carnivorous natural enemies mediated by infochemicals. J Plant Dis Prot 108: 630-642.
Yeom HJ, Kang JS, Kim GH, Park IK. 2012. Insecticidal and acetylcholine esterase inhibition activity of apiaceae plant essential oils and their constituents against adults of german cockroach (Blattella germanica). J Agr Food Chem 60: 7194-7203.
Yi CG, Choi BR, Park HM, Park CG, Ahn YJ. 2006. Fumigant toxicity of plant essential oils to Thrips palmi (Thysanoptera: Thripidae) and Orius strigicollis (Heteroptera: Anthocoridae). J Econ Entomol 99: 1733-1738.
Yi CG, Hieu TT, Lee SH, Choi BR, Kwon M, Ahn YJ. 2016. Toxicity of Lavandula angustifolia oil constituents and spray formulations to insecticide-susceptible and pyrethroid-resistant Plutella xylostella and its endoparasitoid Cotesia glomerata. Pest Manag Sci 72: 1202-1210.
Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. 2012. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? J Econ Entomol 105: 1115-1129.
Zam W, Bashour G, Abdelwahed W, Khayata W. 2014. Alginate-pomegranate peels' polyphenols beads: effects of formulation parameters on loading efficiency. Braz J Pharm Sci 50: 741-748.
Zapata N, Lognay G, Smagghe G. 2010. Bioactivity of essential oils from leaves and bark of Laurelia sempervirens and Drimys winteri against Acyrthosiphon pisum. Pest Manag Sci 66: 1324-1331.
Zarrad K, Hamouda AB, Chaieb I, Laarif A, Jemâa JMB. 2015. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Ind Crop Prod 76: 121-127.
Ziaee M, Moharramipour S, Mohsenifar A. 2014. MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci 87: 691-699.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21770-
dc.description.abstract精油 (Essential oils, EOs) 為許多植物產生的次級代謝物,可能和對抗其天敵的防衛機制相關。精油的藥用價值已廣為人知,如芳香、治療用途、抗菌性能、昆蟲忌避和阻礙效果等,因此這些揮發性化合物在農業害蟲的管理應有很大的應用價值。精油是環境友善及在自然界中是可生物分解的,然而,因其可在短時間內經由蒸發、氧化和聚合作用等因素而快速降解而不受重視,所以迫切需要評估這些現存的問題。微膠囊化技術因其具有緩慢釋放效果常用於製藥工業,但在有害生物管理較少使用。本研究評估微膠囊化的左手香 (Plectranthus amboinicus (Lour.) Spreng.) 精油對於桃蚜 (Myzus persicae (Sulzer)) 與小菜蛾 (Plutella xylostella (Linnaeus)) 的防治效果。左手香精油主要的有效成分由14種合化合物組成,將其中三種含量最多的成分carvacrol, ρ-cymene 及β-caryophyllene以海藻酸鈉 (sodium alginate (SA)) 包埋,經氣相層析質譜儀 (Gas Chromatography-Mass Spectrophotometer, GC-MS) 及固相微萃取 (Solid Phase Microextraction, SPME) 分析0.5% SA 包埋的精油,ρ-cymene 在0~72小時內以高濃度釋放,β-caryophyllene 則相反;Carvacrol在各時段的釋放情形相同。膠囊化的效率測試結果顯示SA的濃度越高 (2%) 則效率越佳,但膠囊越大。再者,生物檢定結果顯示膠囊化的精油以劑量應變方式連續五天對桃蚜與小菜蛾具燻蒸毒性。然而,在開放空間下,膠囊化的精油對桃蚜的效果會因蒸氣會向多方向散逸而下降。反之,對小菜蛾的產卵阻礙檢定有不錯的效果,但對桃蚜的忌避檢定則不顯著。zh_TW
dc.description.abstractEssential oils (EOs) are secondary metabolites produced by many plants which are found possibly crucial in defense mechanism against its natural enemies. They are also widely known for their medicinal, fragrant, therapeutic use, antimicrobial properties, insect repellent and deterrent effects. Thus, these volatile have great values towards the management of agricultural pest. Essential oils are environmental friendly and biodegradable in nature, however, essential oil has limited application due to rapid degradation over a short duration via vaporization, oxidation, polymerization, etc. This problem needs to be addressed. Microencapsulation technologies are commonly used in pharmaceutical industry because of its slow release effects, but less common in pest management. In this study, we evaluated the effect of encapsulated Plectranthus amboinicus (Lour.) Spreng essential oil towards Myzus persicae (Sulzer) and Plutella xylostella (Linnaeus). The active ingredients of Pl. amboinicus essential oils comprise about 14 complex compounds and three major components (carvacrol, ρ-cymene and β-caryophyllene) were encapsulated within sodium alginate (SA). Gas Chromatography-Mass Spectrophotometer (GCMS) analysis with Solid Phase Microextraction (SPME) adsorption founded that in 0.5% SA encapsulated oils, ρ-cymene was released in higher concentration at 0-72 hours whereas β-caryophyllene was the lowest. Carvacrol remains constant at all times. Encapsulation efficiency test displayed that the higher the concentration of SA (2%) the better is the encapsulating efficiency and the bigger is the size of the capsules. Bioassay results showed that encapsulated oils exhibits fumigant toxicity to M. persicae and P. xylostella for five consecutive days in a dose dependent manner. However, the effectiveness of encapsulated EOs towards M. persicae declined accordingly in open space that allows the fumes to escape at multiple directions. Oviposition deterrent assays with P. xylostella showed promising effects, while repellent assays were not significant towards M. persicae.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:46:02Z (GMT). No. of bitstreams: 1
ntu-108-R05632015-1.pdf: 2549005 bytes, checksum: 5f4910f0782943110ff2d5e71d3bfee7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
Acknowledgement ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Tables vii
List of Figures viii
Table of Appendixes x
Chapter 1: Introduction 1
1.1 Essential oils 1
1.2 Plectranthus amboinicus and it’s essential oil 2
1.3 Green Peach Aphid M. persicae 4
1.4 Diamondback Moth (DBM) P. xylostella 5
1.5 Gas Chromatography Mass Spectrometry (GC-MS) and Solid Phase Microextraction (SPME) 6
1.6 Encapsulation of essential oils 7
1.7 Y- Olfactometer 8
1.8 Research aim 8
Chapter 2: Materials and Methods 10
2.1 Insect rearing of M. persicae and P. xylostella 10
2.2 Plectranthus amboinicus essential oil extraction and analysis 10
2.3 Encapsulation of Pl. amboinicus essential oil 11
2.4 The release kinetics of encapsulated essential oil 12
2.5 Repellent bioassay against M. persicae 13
2.6 Fumigant toxicity bioassay against M. persicae 14
2.7 Ovipositional deterrent bioassay against P. xylostella 17
2.8 Fumigant toxicity bioassay against P. xylostella 18
2.9 Statistical analysis 18
Chapter 3: Results 19
3.1 Characterization of SA capsules with essential oil 19
3.2 Repellent bioassay using M. persicae 19
3.3 Fumigant toxicity bioassay against M. persicae 20
3.4 Ovipositional deterrent bioassay against DBM P. xylostella 22
3.5 Fumigant toxicity bioassay against P. xylostella 22
Chapter 4: Discussion 24
4.1 Characterization of essential oil encapsulated SA capsule 24
4.2 Experimental design for repellent and fumigant toxicity bioassay against M. persicae 25
4.3 Experimental design for ovipositional deterrent and fumigant toxicity bioassay against P. xylostella 26
4.4 Relationship of GC-MS results and bioassay results 27
4.5 Future work 28
References 29
Appendixes 55
dc.language.isoen
dc.title海藻膠包埋左手香精油主要成分對桃蚜與小菜蛾的影響zh_TW
dc.titleEffects of Encapsulated Main Components of Plectranthus amboinicus Essential Oils Towards Myzus persicae and Plutella xylostellaen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文哲(Wen-Jer Wu),許如君(Ju-Chun Hsu),蔡坤憲(Kun-Hsien Tsai),黃旌集(Chin-Gi Huang)
dc.subject.keyword精油,微膠囊化,左手香,桃蚜,zh_TW
dc.subject.keywordessential oil,microencapsulation,Plectranthus amboinicus,Myzus persicae,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201900370
dc.rights.note未授權
dc.date.accepted2019-02-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved