請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21768
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳蕙芬 | |
dc.contributor.author | Chun-Yang Chang | en |
dc.contributor.author | 張鈞暘 | zh_TW |
dc.date.accessioned | 2021-06-08T03:45:57Z | - |
dc.date.copyright | 2019-02-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-12 | |
dc.identifier.citation | 1. Durand, S. and G. Storz, Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol, 2010. 75(5): p. 1215-31.
2. 張鈞暘, 大腸桿菌 GrxD 基因表現之調控. 臺灣大學農業化學研究所, 2008. 3. Knoll, A.H. and M.A. Nowak, The timetable of evolution. Sci Adv, 2017. 3(5): p. e1603076. 4. McCord, J.M., B.B. Keele, Jr., and I. Fridovich, An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A, 1971. 68(5): p. 1024-7. 5. Carlioz, A. and D. Touati, Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J, 1986. 5(3): p. 623-30. 6. Flint, D.H., J.F. Tuminello, and M.H. Emptage, The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem, 1993. 268(30): p. 22369-76. 7. Dukan, S., et al., Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A, 2000. 97(11): p. 5746-9. 8. Winterbourn, C.C. and D. Metodiewa, Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med, 1999. 27(3-4): p. 322-8. 9. Keyer, K. and J.A. Imlay, Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13635-40. 10. Keyer, K. and J.A. Imlay, Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J Biol Chem, 1997. 272(44): p. 27652-9. 11. Paniker, N.V., S.K. Srivastava, and E. Beutler, Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta, 1970. 215(3): p. 456-60. 12. Altuvia, S., et al., The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol, 1994. 13(2): p. 265-72. 13. Ilari, A., et al., Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem, 2002. 277(40): p. 37619-23. 14. Kim, S.O., et al., OxyR: a molecular code for redox-related signaling. Cell, 2002. 109(3): p. 383-96. 15. Aslund, F. and J. Beckwith, Bridge over troubled waters: sensing stress by disulfide bond formation. Cell, 1999. 96(6): p. 751-3. 16. Dukan, S. and T. Nystrom, Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev, 1998. 12(21): p. 3431-41. 17. Holmgren, A., Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A, 1976. 73(7): p. 2275-9. 18. Ahn, B.Y. and B. Moss, Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A, 1992. 89(15): p. 7060-4. 19. Gan, Z.R., et al., Complete amino acid sequence of yeast thioltransferase (glutaredoxin). Biochem Biophys Res Commun, 1990. 168(3): p. 944-51. 20. Rouhier, N., et al., Enhancement of poplar glutaredoxin expression by optimization of the cDNA sequence. Protein Expr Purif, 2002. 24(2): p. 234-41. 21. Yang, Y.F. and W.W. Wells, Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis. J Biol Chem, 1991. 266(19): p. 12759-65. 22. Aslund, F., et al., Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc Natl Acad Sci U S A, 1994. 91(21): p. 9813-7. 23. Fernandes, A.P., et al., A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem, 2005. 280(26): p. 24544-52. 24. Holmgren, A., Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem, 1979. 254(9): p. 3672-8. 25. Holmgren, A., Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem, 1979. 254(9): p. 3664-71. 26. Herrero, E. and M.A. de la Torre-Ruiz, Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci, 2007. 64(12): p. 1518-30. 27. Fernandes, A.P. and A. Holmgren, Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal, 2004. 6(1): p. 63-74. 28. Vlamis-Gardikas, A. and A. Holmgren, Thioredoxin and glutaredoxin isoforms. Methods Enzymol, 2002. 347: p. 286-96. 29. Rodriguez-Manzaneque, M.T., et al., Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol, 1999. 19(12): p. 8180-90. 30. Luikenhuis, S., et al., The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell, 1998. 9(5): p. 1081-91. 31. Rodriguez-Manzaneque, M.T., et al., Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell, 2002. 13(4): p. 1109-21. 32. Mesecke, N., et al., Two Novel Monothiol Glutaredoxins from Saccharomyces cerevisiae Provide Further Insight into Iron-Sulfur Cluster Binding, Oligomerization, and Enzymatic Activity of Glutaredoxins. Biochemistry, 2008. 33. Tamarit, J., et al., Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem, 2003. 278(28): p. 25745-51. 34. Rahlfs, S., M. Fischer, and K. Becker, Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem, 2001. 276(40): p. 37133-40. 35. 陳圭芃, 大腸桿菌中 Grx4 蛋白質之研究. 臺灣大學農業化學研究所, 2007. 36. Fernandes, A.P., et al., A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. Journal of Biological Chemistry, 2005. 280(26): p. 24544-24552. 37. Gerdes, S.Y., et al., Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. Journal of Bacteriology, 2003. 185(19): p. 5673-84. 38. Butland, G., et al., eSGA: E. coli synthetic genetic array analysis. Nat Methods, 2008. 5(9): p. 789-95. 39. Fladvad, M., et al., Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli. Journal of Biological Chemistry, 2005. 280(26): p. 24553-24561. 40. Wingert, R.A., et al., Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature, 2005. 436(7053): p. 1035-39. 41. Zinskie, J.A., et al., Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae. J Biol Chem, 2018. 293(37): p. 14237-14248. 42. Dlouhy, A.C., et al., The Escherichia coli BolA Protein IbaG Forms a Histidine-Ligated [2Fe-2S]-Bridged Complex with Grx4. Biochemistry, 2016. 55(49): p. 6869-6879. 43. Shethna, Y.I., et al., Identification by Isotopic Substitution of the Epr Signal at G = 1.94 in a Non-Heme Iron Protein from Azotobacter. Proc Natl Acad Sci U S A, 1964. 52: p. 1263-71. 44. Beinert, H., R.H. Holm, and E. Munck, Iron-sulfur clusters: nature's modular, multipurpose structures. Science, 1997. 277(5326): p. 653-9. 45. Py, B. and F. Barras, Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol, 2010. 8(6): p. 436-46. 46. Daniel, R.M. and M.J. Danson, Did primitive microorganisms use nonhem iron proteins in place of NAD/P? Journal of Molecular Evolution, 1995. 40(6): p. 559-563. 47. Meyer, J., Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem, 2008. 13(2): p. 157-70. 48. Dos Santos, P.C., et al., Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev, 2004. 104(2): p. 1159-73. 49. Dean, D.R., J.T. Bolin, and L. Zheng, Nitrogenase metalloclusters: structures, organization, and synthesis. Journal of Bacteriology, 1993. 175(21): p. 6737-44. 50. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis. FEMS Microbiol Rev, 2003. 27(2-3): p. 215-37. 51. Schaible, U.E. and S.H. Kaufmann, Iron and microbial infection. Nat Rev Microbiol, 2004. 2(12): p. 946-53. 52. Hantke, K., Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet, 1981. 182(2): p. 288-92. 53. Coy, M. and J.B. Neilands, Structural dynamics and functional domains of the fur protein. Biochemistry, 1991. 30(33): p. 8201-10. 54. Bagg, A. and J.B. Neilands, Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry, 1987. 26(17): p. 5471-7. 55. Escolar, L., J. Perez-Martin, and V. de Lorenzo, Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol, 1999. 181(20): p. 6223-9. 56. Dubrac, S. and D. Touati, Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol, 2000. 182(13): p. 3802-8. 57. Hantke, K., Iron and metal regulation in bacteria. Curr Opin Microbiol, 2001. 4(2): p. 172-7. 58. Vecerek, B., I. Moll, and U. Blasi, Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J, 2007. 26(4): p. 965-75. 59. Wassarman, K.M., et al., Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev, 2001. 15(13): p. 1637-51. 60. Argaman, L., et al., Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol, 2001. 11(12): p. 941-50. 61. Masse, E. and S. Gottesman, A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2002. 99(7): p. 4620-5. 62. Masse, E., C.K. Vanderpool, and S. Gottesman, Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol, 2005. 187(20): p. 6962-71. 63. Geissmann, T.A. and D. Touati, Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J, 2004. 23(2): p. 396-405. 64. Masse, E., F.E. Escorcia, and S. Gottesman, Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev, 2003. 17(19): p. 2374-83. 65. Aiba, H., Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol, 2007. 10(2): p. 134-9. 66. Masse, E., et al., Small RNAs controlling iron metabolism. Curr Opin Microbiol, 2007. 10(2): p. 140-5. 67. Lambden, P.R. and J.R. Guest, Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol, 1976. 97(2): p. 145-60. 68. Kiley, P.J. and H. Beinert, The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol, 2003. 6(2): p. 181-5. 69. Achebach, S., et al., Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro. FEBS Lett, 2004. 565(1-3): p. 203-6. 70. Kiley, P.J. and H. Beinert, Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev, 1998. 22(5): p. 341-52. 71. Mettert, E.L. and P.J. Kiley, Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation. J Bacteriol, 2007. 189(8): p. 3036-43. 72. Beaumont, H.J., et al., Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Mol Microbiol, 2004. 54(1): p. 148-58. 73. D'Autreaux, B., et al., A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature, 2005. 437(7059): p. 769-72. 74. Bodenmiller, D.M. and S. Spiro, The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. Journal of Bacteriology, 2006. 188(3): p. 874-81. 75. Tucker, N.P., et al., There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends in Microbiology, 2010. 18(4): p. 149-56. 76. Partridge, J.D., et al., NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol, 2009. 73(4): p. 680-94. 77. Rodionov, D.A., et al., Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol, 2005. 1(5): p. e55. 78. Aldea, M., et al., Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol, 1988. 170(11): p. 5169-76. 79. Aldea, M., et al., Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J, 1989. 8(12): p. 3923-31. 80. Santos, J.M., et al., The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol, 2002. 45(6): p. 1729-40. 81. Freire, P., et al., Effect of the morphogene bolA on the permeability of the Escherichia coli outer membrane. FEMS Microbiol Lett, 2006. 260(1): p. 106-11. 82. Vieira, H.L., P. Freire, and C.M. Arraiano, Effect of Escherichia coli morphogene bolA on biofilms. Appl Environ Microbiol, 2004. 70(9): p. 5682-4. 83. Kasai, T., et al., Solution structure of a BolA-like protein from Mus musculus. Protein Sci, 2004. 13(2): p. 545-8. 84. Huynen, M.A., et al., Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett, 2005. 579(3): p. 591-6. 85. Molina-Navarro, M.M., et al., Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett, 2006. 580(9): p. 2273-80. 86. Marshall, K.C., Planktonic Versus Sessile Life of Prokaryotes. 3 ed. The prokaryotes: a handbook on the biology of bacteria Volume 2: Ecophysiology and Biochemistry., ed. S.F. Martin Dworkin (Editor-in-Chief), Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt (Editors). Vol. 2. 2006, New York: Springer New York. 3-15. 87. Lynch, A.S. and G.T. Robertson, Bacterial and fungal biofilm infections. Annu Rev Med, 2008. 59: p. 415-28. 88. Huq, A., et al., Biofilms in water, its role and impact in human disease transmission. Curr Opin Biotechnol, 2008. 19(3): p. 244-7. 89. J.C. Heaton, K.J., Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 2008. 104(3): p. 613-626. 90. Pruzzo, C., L. Vezzulli, and R.R. Colwell, Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol, 2008. 10(6): p. 1400-10. 91. Bartowsky, E.J. and P.A. Henschke, Acetic acid bacteria spoilage of bottled red wine -- a review. Int J Food Microbiol, 2008. 125(1): p. 60-70. 92. Rudrappa, T., M.L. Biedrzycki, and H.P. Bais, Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol, 2008. 64(2): p. 153-66. 93. Fujishige, N.A., et al., Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol, 2006. 56(2): p. 195-206. 94. K. Ramasamy, K., Sara Parwin Banu, Environmental Bioremediation Technologies. Bioremediation of Metals: Microbial Processes and Techniques ed. R.D.T. Shree N. Singh. 2007: Springer Berlin Heidelberg. 95. Barkay, T. and J. Schaefer, Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol, 2001. 4(3): p. 318-23. 96. Lindsay, D., M. Ntoampe, and V.M. Gray, Biodegradation of sodium benzoate by a Gram-negative consortium in a laboratory-scale fluidized bed bioreactor. Bioresour Technol, 2008. 99(11): p. 5115-9. 97. Baptista, II, et al., Evidence of species succession during chlorobenzene biodegradation. Biotechnol Bioeng, 2008. 99(1): p. 68-74. 98. Artham, T. and M. Doble, Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci, 2008. 8(1): p. 14-24. 99. Phoenix, V.R. and K.O. Konhauser, Benefits of bacterial biomineralization. Geobiology, 2008. 6(3): p. 303-8. 100. Reith, F., et al., The geomicrobiology of gold. ISME J, 2007. 1(7): p. 567-84. 101. ffrench-Constant, R.H., A. Dowling, and N.R. Waterfield, Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 2007. 49(4): p. 436-51. 102. Simons, R.W., F. Houman, and N. Kleckner, Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene, 1987. 53(1): p. 85-96. 103. Guzman, L.M., et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 1995. 177(14): p. 4121-30. 104. Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006. 2: p. 2006 0008. 105. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6640-5. 106. Lennox, E.S., Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 1955. 1(2): p. 190-206. 107. Yarmolinsky, M.B.a.S., N. , Bacteriophage P1. The Bacteriophages, 1988. 1: p. 291-438. 108. Thomason, L.C., N. Costantino, and D.L. Court, E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol, 2007. Chapter 1: p. Unit 1 17. 109. Moore, S.D., Assembling new Escherichia coli strains by transduction using phage P1. Methods Mol Biol, 2011. 765: p. 155-69. 110. Luria, S.E., J.N. Adams, and R.C. Ting, Transduction of Lactose-Utilizing Ability among Strains of E-coli and S-Dysenteriae and the Properties of the Transducing Phage Particles. Virology, 1960. 12(3): p. 348-390. 111. Baba, T. and H. Mori, The construction of systematic in-frame, single-gene knockout mutant collection in Escherichia coli K-12. Methods Mol Biol, 2008. 416: p. 171-81. 112. Kuo, M.S., K.P. Chen, and W.F. Wu, Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology, 2004. 150(Pt 2): p. 437-46. 113. Abreu-Goodger, C. and E. Merino, RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res, 2005. 33(Web Server issue): p. W690-2. 114. Masse, E., C.K. Vanderpool, and S. Gottesman, Effect of RyhB small RNA on global iron use in Escherichia coli. Journal of Bacteriology, 2005. 187(20): p. 6962-71. 115. Prevost, K., et al., Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev, 2011. 25(4): p. 385-96. 116. Karlinsey, J.E., et al., The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol Microbiol, 2012. 85(6): p. 1179-93. 117. Tucker, N.P., et al., There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends in Microbiology, 2010. 18(4): p. 149-156. 118. Li, H., et al., Identification of the binding sites of regulatory proteins in bacterial genomes. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11772-7. 119. Yeung, N., et al., The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry, 2011. 50(41): p. 8957-8969. 120. Ravanini, P., et al., Japanese encephalitis virus RNA detected in Culex pipiens mosquitoes in Italy. Euro Surveill, 2012. 17(28). 121. Lin, Y.H., et al., Expression characterization and promoter activity analysis of the tilapia (Oreochromis niloticus) myosin light chain 3 promoter in skeletal muscle of fish. Transgenic Res, 2013. 122. Wolff, D., et al., Bacterial biofilm composition in caries and caries-free subjects. Caries Res, 2013. 47(1): p. 69-77. 123. Peng, R.H., et al., Adenosine added on the primer 5' end improved TA cloning efficiency of polymerase chain reaction products. Anal Biochem, 2007. 363(1): p. 163-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21768 | - |
dc.description.abstract | 大腸桿菌中的 glutaredoxin-4 (Grx4) 編碼基因為 grxD,為目前唯一在其中發現的單巰 glutaredoxin (僅具 CGFS 的活性區域)。本篇研究利用 grxD-lacZ 融合基因及染色體中 Grx4-3xFLAG 觀察 grxD 的調控,當 small RNA大量表現時,FnrS 負向調控 grxD-lacZ 達原本約 1/2 的表現量,在 Grx4-3xFLAG 蛋白質層面,則看到更明顯的抑制。RyhB 亦負向調控 grxD-lacZ 約 20% 的表現。除此之外,轉錄因子缺失狀態下,發現 NsrR 參與 grxD 的正向調控,nsrR 缺失造成表現量下降近 1/2 ,而 Grx4-3xFLAG 蛋白質層面則影響更鉅。因此 grxD-lacZ 的表現受到如:氧、鐵、一氧化氮相關因子等的調控,也在 Grx4-3xFLAG 對生長產生的影響指出這部分的精細調控的重要性。
除了基因調控的研究之外,在 E. coli 基因工程中 P1 噬菌體扮演重要的地位,必須要用於建構上述各種突變株,故本篇論文亦克服之前 P1 容易失活的問題,利用新的增殖方式使 P1 在基因工程操作上運作順利。最後,藉由之前對 SulA、ClpYQ 的深度研究,我們開發了一套「新穎之轉形及轉殖效率增加與抑制細胞分裂技術」,也期望能夠應用在基因工程、微生物族群分析等研究上。 | zh_TW |
dc.description.abstract | The glutaredoxin-4 (Grx4)-encoding in grxD gene in Escherichia coli, which is the only monothiol glutaredoxin (only active region with CGFS) found in it. In this study, grxD-lacZ fusion gene and Grx4-3xFLAG in chromosome were used to observe the regulation of grxD. When small RNA was expressed in a high level, FnrS negatively regulated grxD-lacZ to about 1/2 of the original expression, at the level of Grx4-3xFLAG protein the more obvious repression happend. RyhB also negatively regulates the performance of grxD-lacZ by ~20%. In addition, in the absence of transcription factors, NsrR was found to be involved in the positive regulation of grxD, and nsrR deletion caused a decrease in performance by nearly 1/2, while the Grx4-3xFLAG protein level was more influential. Therefore, the performance of grxD-lacZ is regulated by factors such as oxygen, iron, and nitric oxide related factors, and the influence of Grx4-3xFLAG on growth indicates the importance of fine regulation of this part.
In addition to gene regulation studies, P1 phage plays an important role in E. coli genetic engineering and be used to construct these various mutants. Therefore, this paper also overcomes the problem of easy inactivation of P1 before, and utilizes new proliferation, the way to make P1 work well in genetic engineering operations. Finally, with the previous in-depth study of SulA and ClpYQ, we have developed a set of 'new enhance cloning and transformation efficiency method and cell division inhibition technology' and expected to be applied in genetic engineering, microbial population analysis and other research. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:45:57Z (GMT). No. of bitstreams: 1 ntu-108-D97623005-1.pdf: 3772817 bytes, checksum: 020022fe795727bfd0bd41cd9bcf0959 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 vi
Abstract vii 已發表文章 viii 一、 前言 1 1.1 活性氧類 (Reactive Oxygen Species) 1 1.2 氧化壓力 (Oxidative Stress) 及硝化壓力 (Nitrosative Stress) 3 1.3 氧化還原調控 (Redox regulation) 3 1.4 Glutaredoxin系統 4 1.5 Grx4 簡介 6 1.6 鐵硫簇 (Iron-sulfur cluster, ISC) 8 1.7 E. coli 中鐵之調控 9 1.7.1 Fur: 9 1.7.2 RyhB: 10 1.8 E. coli 呼吸路徑之調控因子 – FNR 10 1.9 E. coli 呼吸路徑之調控因子 – FnrS 11 1.10 E. coli 一氧化氮相關之調控因子 12 1.11 E. coli Grx4可能的交互作用蛋白質 – BolA 13 1.12 生物膜形成及造成的影響 13 二、 材料與方法 15 2.1 一般研究材料 15 2.1.1 菌株及質體 15 2.1.2 藥品及試劑 16 2.1.3 器材設備 17 2.1.4 分析軟體 17 2.2 一般實驗方法 18 2.2.1 質體製備及轉殖 18 2.2.2 質體製備 18 2.2.3 勝任細胞 ( competent cell ) 製備 19 2.2.4 轉形作用 ( transformation ) 20 2.3 選殖基因表現系統之建立 23 2.3.1 載體 (vector) 的製備 23 2.3.2 選殖基因片段之製備 25 2.3.3 選殖片段之處理 26 2.3.4 接合反應 (ligation reaction) 26 2.3.5 grxD promoter 點突變之質體建構 27 2.4 噬菌體一般實驗方法 27 2.4.1 製備嗜菌體 plate lysates (Preparation of phage plate lysate) 28 2.4.2 Titer the lysate 28 2.4.3 P1 轉導作用 ( P1 transduction ) 29 2.4.4 λ的特定轉導作用 (specialize transduction) 31 2.5 建構基因剃除 (knock out) 與 3x-FLAG 突變株 33 2.6 β-galactosidase 活性分析 36 2.7 西方墨點分析 (Western Blotting) 38 三、 改進噬菌體 P1 增殖方式 40 3.1 前言 40 3.2 材料與方法 42 3.2.1 P1 phage 增殖與濃縮 42 3.3 結果 44 3.3.1 增殖與濃縮方法 P1 phage增殖的效果 44 3.3.2 增殖與濃縮方法中添加Yeast extract對 P1 phage增殖的效果 44 3.4 討論 45 3.4.1 增殖與濃縮方式及添加Yeast extract對 P1 phage的影響 45 四、 大腸桿菌 grxD 基因表現之調控 46 4.1 研究動機與目的 46 4.2 結果 46 4.2.1 歸納與繪製 grxD 上游的 promoter 區域及 cis-element 位置 46 4.2.2 氧含量相關因子抑制 grxD 表現 (FnrS and/or FNR) 47 4.2.3 鐵含量相關因子調控 grxD 表現 (RyhB and/or Fur) 49 4.2.4 一氧化氮相關因子促進 grxD 表現 (NsrR) 50 Grx4-3xFLAG 對生長的影響 52 4.2.5 探討 Grx4 與 BolA 交互作用的意義 53 4.2.6 BolA 與 Grx4 的交互作用現象 53 4.3 討論 54 4.3.1 grxD 受到small RNA 所調控 54 4.3.2 grxD 受到多重因子所調控 54 4.3.3 grxD 具有兩個以上的promoter 55 4.3.4 Grx4 無法建構缺失突變株 55 五、 新穎之轉形及轉殖效率增加與抑制細胞分裂技術 57 5.1 發明所欲解決之問題 57 5.1.1 先前技術之轉形效率可再提升: 57 5.1.2 先前技術之選殖偽陽性率過高: 57 5.1.3 TA選殖(TA cloning)效率及許多使用問題仍待改善: 58 5.1.4 先前技術因受限於轉形效率及偽陽性過高造成選殖的整體問題: 59 5.2 解決問題之技術手段 60 5.2.1 染色體同源重組菌株提高轉形效率 60 5.2.2 藉由抑制細胞分裂減少選殖偽陽性率 60 5.2.3 本專利可進行無縫選殖(Seamless cloning) 60 六、 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | 大腸桿菌中 Grx4 蛋白質特性及其與 ClpYQ 的交互關係 | zh_TW |
dc.title | The characteristics of Grx4 and its interaction with ClpYQ protease in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 邱志郁,黃思蓴,陳建德,王鳳英 | |
dc.subject.keyword | grxD,Grx4,glutaredoxin,FnrS,RyhB,NsrR,氧,鐵,一氧化氮,SulA,ClpYQ, | zh_TW |
dc.subject.keyword | grxD,Grx4,glutaredoxin,FnrS,RyhB,NsrR,Oxygen,iron,nitric oxide,SulA,ClpYQ, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU201900467 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-02-12 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。