Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21767
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor盧信嘉(Hsin-Chia Lu)
dc.contributor.authorTzu-Shiuan Tsengen
dc.contributor.author曾子軒zh_TW
dc.date.accessioned2021-06-08T03:45:55Z-
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-13
dc.identifier.citation[1] V. A. Rabinovich, Nikolai, 'Antenna Arrays and Automotive Applications.' Springer, 2013.
[2] A. Alexiou and M. Haardt, 'Smart antenna technologies for future wireless systems: trends and challenges,' IEEE Communications Magazine, vol. 42, no. 9, pp. 90-97, September 2004.
[3] S. Bellofiore, J. Foutz, C. A. Balanis, and A. S. Spanias, 'Smart-antenna system for mobile communication networks .Part2. Beamforming and network throughput,' IEEE Antennas and Propagation Magazine, vol. 44, no. 4, pp. 106-114, August 2002.
[4] S. Bellofiore, C. A. Balanis, J. Foutz, and A. S. Spanias, 'Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design,' IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 145-154, June 2002.
[5] D. M. Pozar, 'The active element pattern,' IEEE Transactions on Antennas and Propagation, vol. 42, no. 8, pp. 1176-1178, August 1994.
[6] D. F. Kelley, 'Relationships between active element patterns and mutual impedance matrices in phased array antennas,' IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, June 2002, vol.1, pp. 524-527.
[7] D. F. Kelley, 'Embedded element patterns and mutual impedance matrices in the terminated phased array environment,' 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, December 2005, vol. 3A , pp. 659-662.
[8] C. L. Dolph, 'A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level,' Proceedings of the IRE, vol. 34, no. 6, pp. 335-348, June 1946.
[9] A. Safaai-Jazi, 'A new formulation for the design of Chebyshev arrays,' IEEE Transactions on Antennas and Propagation, vol. 42, no. 3, pp. 439-443, March 1994.
[10] C. A. Balanis, 'Antenna Theory: Analysis and Design.' Wiley, 2005.
[11] G. A. T. Warren L. Stutzman, 'Antenna Theory and Design, 3rd Edition.' Wiley, 2012.
[12] P. Hannan, 'The element-gain paradox for a phased-array antenna,' IEEE Transactions on Antennas and Propagation, vol. 12, no. 4, pp. 423-433, July 1964.
[13] P. Carter, 'Mutual impedance effects in large beam scanning arrays,' IRE Transactions on Antennas and Propagation, vol. 8, no. 3, pp. 276-285, May 1960.
[14] J. Allen, 'Gain and impedance variation in scanned dipole arrays,' IRE Transactions on Antennas and Propagation, vol. 10, no. 5, pp. 566-572, September 1962.
[15] W. Wasylkiwskyj and W. Kahn, 'Element patterns and active reflection coefficient in uniform phased arrays,' IEEE Transactions on Antennas and Propagation, vol. 22, no. 2, pp. 207-212, March 1974.
[16] K. Yoon-Won and D. Pozar, 'Correction of error in reduced sidelobe synthesis due to mutual coupling,' IEEE Transactions on Antennas and Propagation, vol. 33, no. 9, pp. 1025-1028, September 1985.
[17] H. Steyskal and J. S. Herd, 'Mutual coupling compensation in small array antennas,' IEEE Transactions on Antennas and Propagation, vol. 38, no. 12, pp. 1971-1975, December 1990.
[18] T. Takahashi, Y. Konishi, S. Makino, H. Ohmine, and H. Nakaguro, 'Fast Measurement Technique for Phased Array Calibration,' IEEE Transactions on Antennas and Propagation, vol. 56, no. 7, pp. 1888-1899, July 2008.
[19] W. P. M. N. Keizer, 'Fast and Accurate Array Calibration Using a Synthetic Array Approach,' IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4115-4122, August 2011.
[20] R. Long, J. Ouyang, F. Yang, W. Han, and L. Zhou, 'Fast Amplitude-Only Measurement Method for Phased Array Calibration,' IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1815-1822, November 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21767-
dc.description.abstract本論文提出只採用相位天線陣列單元間的一階藕合常數來作為補償小型相位天線陣列互藕的方法。首先提出一個簡化且直觀的藕合機制模型,基於這個模型定出一階藕合常數,並提出使用單一量測點求出一階藕合常數的方法,再透過藕合機制模型解釋如何用一階藕合常數如同傳統方法,例如:傅立葉分解法,點匹配法等一般找到互藕補償矩陣,進而補償相位天線陣列的互藕。不是每個情況都適用一階藕合常數進行補償,本論文也會指出哪些情況能夠合理忽略高階藕合常數。
為了評估藕合補償的效果時,避免其他非理想效應出現,例如貼片天線的邊緣繞射(edge diffraction),天線單元輻射場型不是全向性的(omnidirectional)等因素參雜其中,將情境複雜化,論文中採用半波長的偶極天線作為天線單元。
對小型的一維偶極天線陣列,不僅使用本論文提出的一階藕合常數補償法,也同時使用傅立葉分解法,點匹配法一起比較。除了利用補償前後的單元激勵場型(active element pattern)評估補償效果,也考慮了相位陣列理論的(1)改變相位-波束掃描(beam scanning)、(2)改變振幅- 卻比雪夫分布(Chebyschev distribution)等補償前後的差異。二維偶極天線陣列只使用一階藕合常數補償法。以上的情況,一階藕合常數補償法都得到良好的補償效果。
本論文使用了ANSYS HFSS進行模擬和MATLAB進行計算驗證。

關鍵字:相位天線陣列、互藕、單元激勵場型、波束掃描、互藕補償
zh_TW
dc.description.abstractBased on first order coupling between element within the phased array, a technique for mutual coupling compensation in small phased antenna array is presented in this thesis.
First of all, a simple but intuitive coupling mechanism model is proposed. On the basis of this model, first order coupling coefficient is defined and also a method by using only one observation point to determine first order coupling coefficient is given. From the point of view of the model, it can be explained how a compensation matrix which is used in compensation of mutual coupling in phased array can be achieved by means of first order coupling coefficient, as well as that by traditional methods such as Fourier decomposition method and point matching method. Not all cases of coupling can be compensated by first order coupling method. The cases that higher order coupling coefficient can be reasonably neglected in compensation matrix are also indicated.
To evaluate the performance of the compensation of coupling, avoiding other non-ideal effect, for example, edge diffraction in patch antenna, non-omnidirectional pattern, etc included in the system to make the situation more complicated, we use half -wave dipole as radiating element in an array.
In the case of small linear dipole antenna array, we compare the performance of the first order coupling method, Fourier decomposition method and point matching method. For small planar dipole antenna array, only first order coupling coefficient method has been evaluated. In addition to using active element pattern with and without compensation to evaluate the performance of compensation, we also compare the compensated and uncompensated patterns in the following two cases: (1) beam steering by phase difference between elements and (2) element amplitude by Chebyschev distribution. In all the above cases, first order coupling method performs rather good.
In this thesis, we use ANSYS HFSS to do EM simulations and MATLAB to do calculations and verifications.





Keywords: phased array, mutual coupling, active element pattern, beam scanning, mutual coupling compensation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:45:55Z (GMT). No. of bitstreams: 1
ntu-108-R05942029-1.pdf: 7354718 bytes, checksum: 2efb2cde54af608ea859a30b5eed1d86 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
Chapter 1 動機與論文簡介 1
1.1 研究動機 1
1.2 本論文之貢獻 3
1.3 各章節簡介 3
Chapter 2 相位天線陣列和半波長偶極天線理論 4
2.1 天線陣列的陣列因子 4
2.1.1 線性陣列的陣列因子 4
2.1.2 平面陣列的陣列因子 9
2.2 陣列因子的應用 12
2.2.1 控制相位-天線陣列的波束掃描(beam scanning) 12
2.2.2 控制振幅-天線陣列的卻比雪夫分布(Chebyshev distribution) 20
2.3 半波長偶極天線的理論 25
Chapter 3 偶極天線陣列的互藕與補償 36
3.1 天線陣列的單元激勵場型和互藕 36
3.2 天線陣列的藕合機制 41
3.2.1 藕合矩陣與補償矩陣 41
3.2.2 藕合機制的討論和一階藕合常數 45
3.3 決定藕合矩陣和補償矩陣的方法 51
3.3.1 傅立葉分解 51
3.3.2 S參數法 53
3.3.3 N點匹配法 56
3.3.4 一階藕合常數和取單一觀察點求得一階藕合常數的方法 57
3.4 一階藕合常數補償適用的環境 61
Chapter 4 模擬與結果驗證 67
4.1 小型線性E平面藕合偶極天線陣列 67
4.1.1 線性1×2陣列的單元激勵場型,藕合矩陣和補償矩陣 67
4.1.2 線性1×3陣列的單元激勵場型,藕合矩陣和補償矩陣 72
4.1.3 線性1×3陣列的波束掃描 76
4.1.4 線性1×8陣列的單元激勵場型,藕合矩陣和補償矩陣 81
4.1.5 線性1×8陣列的波束掃描和卻比雪夫分布 86
4.2 小型線性H平面藕合偶極天線陣列 93
4.2.1 線性1×2陣列的單元激勵場型和一階藕合法的補償矩陣 94
4.2.2 線性1×8陣列的單元激勵場型,藕合矩陣和補償矩陣 96
4.2.3 線性1×8陣列的的波束掃描和卻比雪夫分布 98
4.3 小型平面偶極天線陣列 104
4.3.1 平面2×2陣列的單元激勵場型和一階藕合法的補償矩陣 104
4.3.2 使用一階藕合法在2×2平面陣列的波束掃描 107
4.4 不同方法的效果比較 112
Chapter 5 結論與展望 117
5.1 結論 117
5.2 未來展望 118
5.3 問題討論 120
參考文獻 133
dc.language.isozh-TW
dc.title只使用一階藕合的小型偶極天線陣列的互藕補償方法zh_TW
dc.titleMutual Coupling Compensation for Small Dipole Arrays Using Only First Order Couplingen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周錫增(Hsi-Tseng Chou),陳晏笙(Yen-Sheng Chen),曾昭雄(Chao-Hsiung Tseng)
dc.subject.keyword相位天線陣列,互藕,單元激勵場型,波束掃描,互藕補償,zh_TW
dc.subject.keywordphased array,mutual coupling,active element pattern,beam scanning,mutual coupling compensation,en
dc.relation.page134
dc.identifier.doi10.6342/NTU201900512
dc.rights.note未授權
dc.date.accepted2019-02-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
7.18 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved