Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21677
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾郁仁(Larry Y. Tzeng, Ph.D.)
dc.contributor.authorYing-Tse Hsiaoen
dc.contributor.author蕭穎澤zh_TW
dc.date.accessioned2021-06-08T03:42:13Z-
dc.date.copyright2019-07-15
dc.date.issued2019
dc.date.submitted2019-06-21
dc.identifier.citation[1] Arrow, K.J., (1965). Aspects of the theory of risk-bearing. Helsinki, Yrjö Jahnssonin Säätiö.
[2] Arrow, K.J., (1971). Essays in the theory of risk-bearing. Chicago, Markham Publishing Company.
[3] Artzner, P., Delbaen, F., Eber, J., Heath, D., (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203-228.
[4] Aumann, R.J., Serrano, R. (2008). An economic index of riskiness. Journal of Political Economy, 116(5), 810-836.
[5] Brooks, C., Henry, O.T., Persand, G., (2002). The effect of asymmetries on optimal hedge ratio. Journal of Business, 75, 333-352.
[6] Brouhns, N., Denuit, M., Vermunt, J.K., (2002). A Poisson log-bilinear regression approach to the construction of projected life tables. Insurance: Mathematics and Economics, 31, 373-393.
[7] Cairns, A.J.G., Blake, D., Dowd, K., (2006a). Pricing death: Frameworks for the valuation and securitization of mortality risk. ASTIN Bulletin, 36, 79-120.
[8] Cairns, A.J.G., Blake, D., Dowd, K., (2006b). A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and
Insurance, 73, 687-718.
[9] Cairns, A.J.G., Blake, D., Dowd, K., Goughlan, G.D., Epstein, D., Ong, A., Balevich, I., (2007). A quantitative comparison of stochastic mortality models using data from
England and Wales and the United States. North American Actuarial Journal, 13(1), 1-35.
[10] Chen, Y.T., Ho, K.Y., Tseng, L.Y., (2014). Riskiness-minimizing spot-futures hedge ratio. Journal of Banking & Finance, 40, 154-164.
[11] Cox, S.H., Lin, Y., (2007). Natural hedging of life and annuity mortality risks. North American Actuarial Journal, 11(3), 1-15.
[12] Dowd, K., Blake, D., Cairns, A.J.G., Dawson, P., (2006). Survivor swaps. Journal of Risk and Insurance, 73, 1-17.
[13] Ederington, L.H., (1979). The hedging performance of the new futures markets. Journal of Finance, 34, 157-170.
[14] Lin, Y., Cox, S.H., (2005). Securitization of mortality risks in life annuities. Journal of Risk and Insurance, 72, 227-252.
[15] Milevsky, M.A., Promislow, S.D., Young, V.R., (2006). Killing the law of large numbers: Mortality risk premiums and the sharpe ratio. Journal of Risk and Insurance, 73(4), 673-686.
[16] Pratt, J., (1964). Risk aversion in large and small. Econometrica, 32, 122-136.
[17] Renshaw, A.E., Haberman, S., (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38, 556-570.
[18] Tsai, J.T., Wang, J.L., Tseng, L.Y., (2010). On the optimal product mix in life insurance companies using conditional value at risk. Insurance: Mathematics and Economics, 46, 235-241.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21677-
dc.description.abstract自然避險(natural hedge)是透過年金商品與壽險商品對於死亡率波動反向影響的特性,來降低保險公司對於死亡率波動的不確定性,過去文獻使用許多風險衡量指標以計算自然避險比率,然而這些指標仍存在一些問題。Aumann與Serrano (2008)提出一個具有許多良好性質的新風險衡量指標Riskiness,包括對偶性(duality)、正齊次性(positive homogeneity)、一階隨機優越(first-order stochastic dominance)以及二階隨機優越(second-order stochastic dominance),藉由這些性質能更客觀地衡量風險。
本篇論文參考Tsai et al.(2010)提出的最小化條件風險值(Conditional Value-at-Risk Minimization, CVaRM)方法,透過CBD二因子死亡率模型(Cairns et al., 2006b)預測美國地區之死亡率波動,並改使用具有更多良好性質的Riskiness作為風險衡量指標,以最小化Riskiness為目標計算最適自然避險比率(Chen et al., 2014)。研究結果顯示,無論使用終身壽險或是定期壽險作為年金的避險商品,最小化Riskiness的同時較能考慮到商品組合的獲利能力,即相比於CVaRM,有著更高的利潤率與更小的Riskiness。
zh_TW
dc.description.abstractSince the fluctuation of mortality rates will make an opposite impact on the values of annuity and life insurance, natural hedging strategy suggests creating a product mix from both products to hedge longevity risk. Numerous papers have provided findings which determine optimal hedge ratio by minimizing different risk measures, while none of whom satisfy the monotonicity with respect to stochastic dominance. To measure risk more objectively, Aumann and Serrano (2008) have proposed a new economic index of riskiness. The index, Riskiness, contains many good properties including duality, positive homogeneity, first-order stochastic dominance and second-order stochastic dominance.
This thesis applies the approach that determines the optimal natural hedge ratio by minimizing Riskiness of product mix (Chen et al., 2014). To create a hedging portfolio, CBD model (Cairns et al., 2006b) is implemented to project the future mortality rates in U.S. The results show that whether whole-life or term-life insurance serves as a hedging vehicle, Riskiness-minimizing method can properly reflect both gains and losses in comparison of the CVaRM method (Tsai et al., 2010), that is, a higher profit loading and a lower Riskiness.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:42:13Z (GMT). No. of bitstreams: 1
ntu-108-R06723058-1.pdf: 960253 bytes, checksum: 5d0c7db6cd7fe274487a8040fb69b00a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
中文摘要………………………………………………………………...……………....ii
Abstract..……………………………...………………………………………………iii
目錄…………………………………...………………………………………………...iv
圖目錄………………………………...………………………………………………....v
表目錄………………………………...………………………………………………vi
第一章 緒論…………………………...………………………………………………..1
第二章 文獻回顧……………………...………………………………………………..3
2.1長壽風險避險方法……………………………………………………………..3
2.2風險衡量指標……………………………………...…………………………...4
第三章 研究方法與模型………………...……………………………………………..5
3.1新風險指標Riskiness…………………………………………………………..5
3.2 CBD二因子死亡率模型……………………………………………………….6
3.3 Sharpe ratio估計利潤率………….…………………………………………….8
3.4最小化Conditional Value-at-Risk方法…….…………………………………..9
3.5最小化Riskiness方法………………………………………………………...10
第四章 研究結果……………………………………………………………………12
4.1 CBD死亡率模型參數估計與保險商品設計………………………………...12
4.2最適自然避險比率之數值結果………………………………………………15
第五章 結論……………………………………………...……………………………19
參考文獻…………………………………………………...…………………………..20
dc.language.isozh-TW
dc.titleRiskiness之應用:保險公司之最適自然避險比率zh_TW
dc.titleThe application of Riskiness on the optimal natural hedge ratio in life insurance companiesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王仁宏,黃瑞卿
dc.subject.keyword長壽風險,自然避險,最適避險比率,新風險指標,隨機死亡率,zh_TW
dc.subject.keywordLongevity risk,Natural hedge,Optimal hedge ratio,Riskiness,Stochastic mortality rates,en
dc.relation.page21
dc.identifier.doi10.6342/NTU201900994
dc.rights.note未授權
dc.date.accepted2019-06-21
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
937.75 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved