請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21638
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 諶玉真(Yu-Jane Sheng) | |
dc.contributor.author | Cheng-Yu Lin | en |
dc.contributor.author | 林政宇 | zh_TW |
dc.date.accessioned | 2021-06-08T03:40:41Z | - |
dc.date.copyright | 2019-07-10 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-02 | |
dc.identifier.citation | 1. Kim, J. K., Yang, S. Y., Lee, Y., & Kim, Y. (2010). Functional nanomaterials based on block copolymer self-assembly. Progress in Polymer Science, 35(11), 1325-1349.
2. Feng, H., Lu, X., Wang, W., Kang, N. G., & Mays, J. (2017). Block copolymers: Synthesis, self-assembly, and applications. Polymers, 9(10), 494. 3. Hu, H., Gopinadhan, M., & Osuji, C. O. (2014). Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft matter, 10(22), 3867-3889. 4. Grzelczak, M., Vermant, J., Furst, E. M., & Liz-Marzan, L. M. (2010). Directed self-assembly of nanoparticles. ACS nano, 4(7), 3591-3605. 5. Angelescu, D. E., Waller, J. H., Adamson, D. H., Deshpande, P., Chou, S. Y., Register, R. A., & Chaikin, P. M. (2004). Macroscopic orientation of block copolymer cylinders in single‐layer films by shearing. Advanced Materials, 16(19), 1736-1740. 6. Olszowka, V., Hund, M., Kuntermann, V., Scherdel, S., Tsarkova, L., & Boker, A. (2009). Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. ACS nano, 3(5), 1091-1096. 7. Majewski, P. W., Gopinadhan, M., Jang, W. S., Lutkenhaus, J. L., & Osuji, C. O. (2010). Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. Journal of the American Chemical Society, 132(49), 17516-17522. 8. Yager, K. G., Fredin, N. J., Zhang, X., Berry, B. C., Karim, A., & Jones, R. L. (2010). Evolution of block-copolymer order through a moving thermal zone. Soft Matter, 6(1), 92-99. 9. Singh, G., Yager, K. G., Berry, B., Kim, H. C., & Karim, A. (2012). Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films. Acs Nano, 6(11), 10335-10342. 10. Cheng, J. Y., Rettner, C. T., Sanders, D. P., Kim, H. C., & Hinsberg, W. D. (2008). Dense self‐assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Advanced Materials, 20(16), 3155-3158. 11. Ruiz, R., Kang, H., Detcheverry, F. A., Dobisz, E., Kercher, D. S., Albrecht, T. R., ... & Nealey, P. F. (2008). Density multiplication and improved lithography by directed block copolymer assembly. Science, 321(5891), 936-939. 12. Liu, C. C., Ramírez-Hernández, A., Han, E., Craig, G. S., Tada, Y., Yoshida, H., ... & Nealey, P. F. (2013). Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features. Macromolecules, 46(4), 1415-1424. 13. Doerk, G. S., Liu, C. C., Cheng, J. Y., Rettner, C. T., Pitera, J. W., Krupp, L. E., ... & Sanders, D. P. (2012). Pattern placement accuracy in block copolymer directed self-assembly based on chemical epitaxy. ACS nano, 7(1), 276-285. 14. Cheng, J. Y., Mayes, A. M., & Ross, C. A. (2004). Nanostructure engineering by templated self-assembly of block copolymers. Nature materials, 3(11), 823. 15. Segalman, R. A., Yokoyama, H., & Kramer, E. J. (2001). Graphoepitaxy of spherical domain block copolymer films. Advanced Materials, 13(15), 1152-1155. 16. Bita, I., Yang, J. K., Jung, Y. S., Ross, C. A., Thomas, E. L., & Berggren, K. K. (2008). Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science, 321(5891), 939-943. 17. Jung, Y. S., Chang, J. B., Verploegen, E., Berggren, K. K., & Ross, C. A. (2010). A path to ultranarrow patterns using self-assembled lithography. Nano Letters, 10(3), 1000-1005. 18. Han, E., Leolukman, M., Kim, M., & Gopalan, P. (2010). Resist free patterning of nonpreferential buffer layers for block copolymer lithography. ACS nano, 4(11), 6527-6534. 19. Choi, K. I., Kim, T. H., Lee, Y., Kim, H., Lee, H., Yuan, G., ... & Koo, J. (2018). Perpendicular Orientation of Diblock Copolymers Induced by Confinement between Graphene Oxide Sheets. Langmuir, 34(4), 1681-1690. 20. Milner, S. T. (1991). Polymer brushes. Science, 251(4996), 905-914. 21. Tsujii, Y., Ohno, K., Yamamoto, S., Goto, A., & Fukuda, T. (2006). Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In Surface-initiated polymerization I (pp. 1-45). Springer, Berlin, Heidelberg. 22. Barbey, R., Lavanant, L., Paripovic, D., Schuwer, N., Sugnaux, C., Tugulu, S., & Klok, H. A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chemical reviews, 109(11), 5437-5527. 23. Kim, M., Schmitt, S., Choi, J., Krutty, J., & Gopalan, P. (2015). From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers, 7(7), 1346-1378. 24. Harada, Y., Girolami, G. S., & Nuzzo, R. G. (2003). Catalytic amplification of patterning via surface-confined ring-opening metathesis polymerization on mixed primer layers formed by contact printing. Langmuir, 19(12), 5104-5114. 25. Kong, B., Lee, J. K., & Choi, I. S. (2007). Surface-initiated, ring-opening metathesis polymerization: Formation of diblock copolymer brushes and solvent-dependent morphological changes. Langmuir, 23(12), 6761-6765. 26. Jordan, R., Ulman, A., Kang, J. F., Rafailovich, M. H., & Sokolov, J. (1999). Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers. Journal of the American Chemical Society, 121(5), 1016-1022. 27. Advincula, R., Zhou, Q., Park, M., Wang, S., Mays, J., Sakellariou, G., ... & Hadjichristidis, N. (2002). Polymer brushes by living anionic surface initiated polymerization on flat silicon (SiO x) and gold surfaces: homopolymers and block copolymers. Langmuir, 18(22), 8672-8684. 28. Jordan, R., & Ulman, A. (1998). Surface initiated living cationic polymerization of 2-oxazolines. Journal of the American Chemical Society, 120(2), 243-247. 29. Zhao, B., & Brittain, W. J. (1999). Synthesis of tethered polystyrene-block-poly (methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization. Journal of the American Chemical Society, 121(14), 3557-3558. 30. Biesalski, M., & Rühe, J. (1999). Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface. Macromolecules, 32(7), 2309-2316. 31. Huang, W., Skanth, G., Baker, G. L., & Bruening, M. L. (2001). Surface-initiated thermal radical polymerization on gold. Langmuir, 17(5), 1731-1736. 32. Wischerhoff, E., Uhlig, K., Lankenau, A., Börner, H. G., Laschewsky, A., Duschl, C., & Lutz, J. F. (2008). Controlled cell adhesion on PEG‐based switchable surfaces. Angewandte Chemie International Edition, 47(30), 5666-5668. 33. Azzaroni, O. (2012). Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. Journal of Polymer Science Part A: Polymer Chemistry, 50(16), 3225-3258. 34. de Gennes, P. (1980). Conformations of polymers attached to an interface. Macromolecules, 13(5), 1069-1075. 35. Long, D., Ajdari, A., & Leibler, L. (1996). Static and dynamic wetting properties of thin rubber films. Langmuir, 12(21), 5221-5230. 36. Peters, R. D., Yang, X. M., Kim, T. K., & Nealey, P. F. (2000). Wetting behavior of block copolymers on self-assembled films of alkylchlorosiloxanes: effect of grafting density. Langmuir, 16(24), 9620-9626. 37. Kerle, T., Lin, Z., Kim, H. C., & Russell, T. P. (2001). Mobility of polymers at the air/polymer interface. Macromolecules, 34(10), 3484-3492. 38. Zhitenev, N. B., Sidorenko, A., Tennant, D. M., & Cirelli, R. A. (2007). Chemical modification of the electronic conducting states in polymer nanodevices. Nature nanotechnology, 2(4), 237. 39. Mansky, P., Liu, Y., Huang, E., Russell, T. P., & Hawker, C. (1997). Controlling polymer-surface interactions with random copolymer brushes. Science, 275(5305), 1458-1460. 40. Ryu, D. Y., Shin, K., Drockenmuller, E., Hawker, C. J., & Russell, T. P. (2005). A generalized approach to the modification of solid surfaces. Science, 308(5719), 236-239. 41. In, I., La, Y. H., Park, S. M., Nealey, P. F., & Gopalan, P. (2006). Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films. Langmuir, 22(18), 7855-7860. 42. Buzzacchera, I., Vorobii, M., Kostina, N. Y., de los Santos Pereira, A., Riedel, T., Bruns, M., ... & Rodriguez-Emmenegger, C. (2017). Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings. Biomacromolecules, 18(6), 1983-1992. 43. D. J. Griffiths, Introduction to quantum mechanics, Pearson Education India, 2005. 44. Hirvensalo, M. (2013). Quantum computing. Springer Netherlands. 45. Shankar, R. (2012). Principles of quantum mechanics. Springer Science & Business Media. 46. Allen, M. P., & Tildesley, D. J. (2017). Computer simulation of liquids. Oxford university press. 47. Frenkel, D., & Smit, B. (2002). Understanding molecular simulation: From algorithms to applications. Computational sciences series, 1, 1-638. 48. Leach, A. R., & Leach, A. R. (2001). Molecular modelling: principles and applications. Pearson education. 49. Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer physics communications, 91(1-3), 43-56. 50. Hoogerbrugge, P. J., & Koelman, J. M. V. A. (1992). Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Letters), 19(3), 155. 51. Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics, 107(11), 4423-4435.Huang, C. I., Fang, H. K., & Lin, C. H. (2008). Morphological transition behavior of A B C star copolymers by varying the interaction parameters. Physical Review E, 77(3), 031804. 52. Chernyy, S., Kirkensgaard, J. J. K., Mahalik, J. P., Kim, H., Arras, M. M., Kumar, R., ... & Almdal, K. (2018). Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms. Macromolecules, 51(3), 1041-1051. 53. Weng, Y. H., Tsao, H. K., & Sheng, Y. J. (2018). Self-healing and dewetting dynamics of a polymer nanofilm on a smooth substrate: strategies for dewetting suppression. Physical Chemistry Chemical Physics, 20(31), 20459-20467 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21638 | - |
dc.description.abstract | 星狀高分子由於具有豐富的多樣性結構,能夠定向自組裝成多種型態以應用於奈米蝕刻。本研究利用多體耗散動力學研究ABC星狀高分薄膜於基材表面上之微結構與穩定性,並透過改變基材表面親和力以及高分子構型以探討其因素對於薄膜的影響。
在研究中,當高分子薄膜置於非選擇性之基材上,亦即基材對高分子各鏈段之粒子具相同之親和力。由模擬結果得知,不同的高分子構型會自組裝而成不同的結構,如層狀結構或是正多邊形鑲嵌等,且其圖形皆垂直於基材表面。當高分子薄膜置於選擇性之基材上,星狀高分子會因作用力設定的不同而使薄膜產生完全不同的微結構。接著在高分子薄膜置入一個乾孔以模擬當薄膜受外界干擾時的孔洞變化情形,並藉此判斷薄膜之穩定性。結果顯示其孔洞變化可以分為三個平衡狀態,(i)自我修復(ii)穩定孔洞以及(iii)成核擴張,影響薄膜穩定性的原因包括乾孔大小、薄膜微結構、基材親和力等因素。 以基材表面之作用力作為基礎,將高分子刷接枝於基材表面,並透過改變高分子刷之組成比例,以調節其表面對於高分子薄膜之親和性。結果發現當高分子刷各成分組成相同時,則其表面能再現非選擇性基材之親和力,使其高分子呈現垂直於基材表面之排列。當高分子刷各成分組成不一致時,則其表面能再現選擇性基材之親和力。 | zh_TW |
dc.description.abstract | Due to the rich diversity of the architectures, miktoarm star polymers possess the ability of directed self-assembly into various morphologies which have potential applications for nanolithography. In this study, many-body dissipative particle dynamics is used to explore the microstructure and the stability of the thin film formed by the ABC miktoarm star terpolymers on substrate surfaces. The effects of attraction interaction between a polymer and the substrate and the conformation of miktoarm star polymers on the behavior of the thin film are also investigated.
For a polymer melt spread on a nonselective substrate surface, different ordered structures such as lamellae and Archimedean-tiling patterns are discovered as the conformations of miktoarm star polymers varies. Polymer films on selective substrate surfaces can exhibit microstructures that are distinct from those formed on the nonselective substrate surface. In order to examine the stability of the polymer thin films, a dry hole is imposed on it. Three types of scenarios are identified, (i) self-healing, (ii) stable hole, and (iii) nucleation and growth. The outcome depends on the radius of the dry hole, the conformation of miktoarm star polymer, and the surface interaction. Finally, we also study the effect of the polymer brushes on the morphological behaviors of the polymer thin film . By altering the composition of the polymer brushes, it is possible to manipulate the surfaces to mimic the affinity of nonselective or selective substrates. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:40:41Z (GMT). No. of bitstreams: 1 ntu-108-R06524032-1.pdf: 12565180 bytes, checksum: ede3917911199452604c0d9eced6a93b (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X Chapter1 緒論 1 1-1 簡介 1 1-2 定向自組裝現象 3 1-3 高分子刷 5 Chapter2 實驗原理及方法 7 2-1 簡介 7 2-2 多體耗散粒子動力學法(Many-body Dissipative Particle Dynamics; MDPD) 9 2-2-1 MDPD計算原理 10 2-2-2 MDPD位置與速度演算法 13 2-3 MDPD參數設定 15 2-3-1 無因次群之計算 15 2-3-2 週期性邊界條件 15 2-4 作用力參數與Flory-Huggins Theory 17 2-5 系統參數 21 2-5-1 星狀高分子結構建立 21 2-5-2 隨機排列牆結構建立 21 2-5-3 作用力參數之設定 22 2-5-4 高分子刷結構建立 23 2-5-5 彈簧作用力 24 2-5-6 施萊夫利符號 26 2-5-7 接觸角測量方法 26 2-5-8 孔洞面積分析方法 26 Chapter3 星狀高分子薄膜在非選擇性基材上的自組裝行為 28 3-1 系統參數對薄膜結構的影響 28 3-1-1 高分子鏈段間作用力參數效應 28 3-1-2 溫度效應 30 3-2 高分子構型對薄膜結構之影響 32 3-3 基材親和力對薄膜結構之影響 36 3-4 高分子薄膜穩定性測試 39 3-4-1 基材親和力效應 40 3-4-2 初始孔洞半徑效應 45 3-5 薄膜穩定孔洞之成因 49 3-5-1 純星狀高分子薄膜 49 3-5-2 混合薄膜之孔洞變化 51 3-5-3 ABC線性段鏈共聚高分子薄膜 52 3-5-4 星狀高分子液滴之平衡狀態 54 Chapter4 星狀高分子薄膜在選擇性基材上的自組裝行為 57 4-1 作用力參數aAS > aBS = aCS條件下對薄膜物性之影響 57 4-1-1 薄膜結構 57 4-1-2 薄膜穩定性 60 4-2 作用力參數aAS < aBS = aCS條件下對薄膜物性之影響 62 4-2-1 薄膜結構 62 4-2-2 薄膜穩定性 64 Chapter5 星狀高分子薄膜在高分子刷表面上的自組裝行為 66 5-1 純高分子刷對薄膜結構之影響 66 5-2 隨機共聚高分子刷對薄膜結構之影響 69 Chapter6 結論 72 Chapter7 參考文獻 74 | |
dc.language.iso | zh-TW | |
dc.title | 以多體耗散粒子動力學研究星狀高分子定向自組裝於基材表面 | zh_TW |
dc.title | A Many-Body Dissipative Particle Dynamics Study:Directed Self-Assembly of Miktoarm Star Copolymer on Substrate Surfaces | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹恆光(Heng-Kwong Tsao),謝之真(Chih-Chen Hsieh),游琇?(Hsiu-Yu Yu) | |
dc.subject.keyword | 星狀高分子,定向自組裝,多體耗散粒子動力學,高分子刷,薄膜穩定, | zh_TW |
dc.subject.keyword | Miktoarm star polymers,Directed self-assembly,Many-body dissipative particle dynamic,Polymer brush,Thin film stability, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201901156 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 12.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。