Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇
dc.contributor.authorMeng-Ju Hsiehen
dc.contributor.author謝孟儒zh_TW
dc.date.accessioned2021-06-08T03:40:24Z-
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-07-03
dc.identifier.citation[1] D. Anderson, J. L. Frankel, J. Marks, D. Leigh, E. Sullivan, J. Yedidia, and K. Ryall. Building virtual structures with physical blocks. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology, UIST ’99, pages 71–72, New York, NY, USA, 1999. ACM.
[2] M. Ando, Y. Itoh, T. Hosoi, K. Takashima, K. Nakajima, and Y. Kitamura. Stackblock: Block-shaped interface for flexible stacking. In Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST’14 Adjunct, pages 41–42, New York, NY, USA, 2014. ACM.
[3] T. Bartindale and C. Harrison. Stacks on the surface: Resolving physical order using fiducial markers with structured transparency. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS ’09, pages 57–60, New York, NY, USA, 2009. ACM.
[4] P. Baudisch, T. Becker, and F. Rudeck. Lumino: Tangible blocks for tabletop computers based on glass fiber bundles. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages 1165–1174, New York, NY, USA, 2010. ACM.
[5] P. Baudisch, T. Becker, and F. Rudeck. Lumino: Tangible blocks for tabletop computers based on glass fiber bundles. In ACM CHI 2010 Conference Proceedings, pages 1165– 1174, 2010.
[6] E. Berlin, J. Liu, K. van Laerhoven, and B. Schiele. Coming to grips with the objects we grasp: Detecting interactions with efficient wrist-worn sensors. In Proc. TEI ’10, pages 57–64, 2010. 119 BIBLIOGRAPHY
[7] D. D. Brandt andW. H.Wielebski. Rfid tag based discrete contact position indication, Aug. 9 2011. US Patent 7,994,924.
[8] S. Caizzone, C. Occhiuzzi, and G. Marrocco. Multi-chip rfid antenna integrating shapememory alloys for detection of thermal thresholds. IEEE Transactions on Antennas and Propagation, 59(7):2488–2494, July 2011.
[9] L. Catarinucci, R. Colella, and L. Tarricone. A cost-effective uhf rfid tag for transmission of generic sensor data in wireless sensor networks. IEEE Transactions on Microwave Theory and Techniques, 57(5):1291–1296, May 2009.
[10] L. Catarinucci, R. Colella, and L. Tarricone. Enhanced uhf rfid sensor-tag. IEEE Microwave and Wireless Components Letters, 23(1):49–51, Jan 2013.
[11] L. Chan, R.-H. Liang, M.-C. Tsai, K.-Y. Cheng, C.-H. Su, M. Y. Chen, W.-H. Cheng, and B.-Y. Chen. Fingerpad: Private and subtle interaction using fingertips. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 255–260, New York, NY, USA, 2013. ACM.
[12] L. Chan, S. M¨uller, A. Roudaut, and P. Baudisch. Capstones and zebrawidgets: Sensing stacks of building blocks, dials and sliders on capacitive touch screens. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pages 2189– 2192, New York, NY, USA, 2012. ACM.
[13] L. Chan, S. M¨uller, A. Roudaut, and P. Baudisch. Capstones and zebrawidgets: Sensing stacks of building blocks, dials and sliders on capacitive touch screens. In ACM CHI 2012 Conference Proceedings, pages 2189–2192, 2012.
[14] B. M. Collective and D. Shaw. Makey makey: Improvising tangible and nature-based user interfaces. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, pages 367–370, New York, NY, USA, 2012. ACM.
[15] J.-P. Curty, M. Declercq, C. Dehollain, and N. Joehl. Design and Optimization of Passive UHF RFID Systems. Springer Publishing Company, Incorporated, 1st edition, 2010.
[16] C. Dierk, T. Vega G´alvez, and E. Paulos. Alternail: Ambient, batteryless, stateful, dynamic displays at your fingertips. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 6754–6759, New York, NY, USA, 2017. ACM. 120 BIBLIOGRAPHY
[17] P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST ’01, pages 219–226, New York, NY, USA, 2001. ACM.
[18] P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST ’01, pages 219–226, New York, NY, USA, 2001. ACM.
[19] A. Feldman, E. M. Tapia, S. Sadi, P. Maes, and C. Schmandt. Reachmedia: On-the-move interaction with everyday objects. In Proc. IEEE ISWC ’05, pages 52–59, 2005.
[20] J. J. Gibson. The theory of affordances.
[21] W. B. Goh, L. L. C. Kasun, Fitriani, J. Tan, andW. Shou. The i-cube: Design considerations for block-based digital manipulatives and their applications. In Proceedings of the Designing Interactive Systems Conference, DIS ’12, pages 398–407, New York, NY, USA, 2012. ACM.
[22] M. G. Gorbet, M. Orth, and H. Ishii. Triangles: Tangible interface for manipulation and exploration of digital information topography. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’98, pages 49–56, New York, NY, USA, 1998. ACM Press/Addison-Wesley Publishing Co.
[23] A. Gupta, D. Fox, B. Curless, and M. Cohen. Duplotrack: A real-time system for authoring and guiding duplo block assembly. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages 389–402, New York, NY, USA, 2012. ACM.
[24] C. Harrison, R. Xiao, and S. Hudson. Acoustic barcodes: Passive, durable and inexpensive notched identification tags. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages 563–568, New York, NY, USA, 2012. ACM.
[25] F. Hennecke, R. Wimmer, E. Vodicka, and A. Butz. Vertibles: Using vacuum self-adhesion to create a tangible user interface for arbitrary interactive surfaces. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, pages 303–306, New York, NY, USA, 2012. ACM. 121 BIBLIOGRAPHY
[26] D. Holman and R. Vertegaal. Tactiletape: Low-cost touch sensing on curved surfaces. In Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology, UIST ’11 Adjunct, pages 17–18, New York, NY, USA, 2011. ACM.
[27] L. E. Holmquist, J. Redstr¨om, and P. Ljungstrand. Token-based access to digital information. In International Symposium on Handheld and Ubiquitous Computing, pages 234–245. Springer, 1999.
[28] T. Hosoi, K. Takashima, T. Adachi, Y. Itoh, and Y. Kitamura. A-blocks: Recognizing and assessing child building processes during play with toy blocks. In ACM SIGGRAPH Asia 2014 Emerging Technologies, pages 1:1–1:2, New York, NY, USA, 2014. ACM.
[29] M.-J. Hsieh, R.-H. Liang, D.-Y. Huang, J.-Y. Ke, and B.-Y. Chen. Rfibricks: Interactive building blocks based on rfid. In ACM CHI 2018 Conference Proceedings, pages 189:1– 189:10, 2018.
[30] M.-J. Hsieh, R.-H. Liang, D.-Y. Huang, J.-Y. Ke, and B.-Y. Chen. Rfibricks: interactive building blocks based on rfid. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 189. ACM, 2018.
[31] M.-J. Hsieh, R.-H. Liang, D.-Y. Huang, J.-Y. Ke, and B.-Y. Chen. Rfibricks: Interactive building blocks based on rfid. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 189:1–189:10, New York, NY, USA, 2018. ACM.
[32] M.-J. Hsieh, R.-H. Liang, J.-Y. Huang, and B.-Y. Chen. Rfidesk: An interactive surface for multi-touch and rich-id stackable tangible interactions. In SIGGRAPH Asia 2018 Emerging Technologies, page 2. ACM, 2018.
[33] K. Ikematsu and I. Siio. Ohmic-touch: Extending touch interaction by indirect touch through resistive objects. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 521:1–521:8, New York, NY, USA, 2018. ACM.
[34] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI ’97, pages 234–241, New York, NY, USA, 1997. ACM. 122 BIBLIOGRAPHY
[35] H. Jin, J. Wang, Z. Yang, S. Kumar, and J. Hong. Wish: Towards a wireless shape-aware world using passive rfids. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’18, pages 428–441, New York, NY, USA, 2018. ACM.
[36] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-mache: Toolkit support for tangible input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages 399–406, New York, NY, USA, 2004. ACM.
[37] J. Leitner and M. Haller. Geckos: Combining magnets and pressure images to enable new tangible-object design and interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2985–2994, New York, NY, USA, 2011. ACM.
[38] J. Leong, F. Perteneder, H.-C. Jetter, and M. Haller. What a life!: Building a framework for constructive assemblies. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’17, pages 57–66, New York, NY, USA, 2017. ACM.
[39] H. Li, E. Brockmeyer, E. J. Carter, J. Fromm, S. E. Hudson, S. N. Patel, and A. Sample. Paperid: A technique for drawing functional battery-free wireless interfaces on paper. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 5885–5896, New York, NY, USA, 2016. ACM.
[40] H. Li, C. Ye, and A. P. Sample. Idsense: A human object interaction detection system based on passive uhf rfid. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 2555–2564, New York, NY, USA, 2015. ACM.
[41] H. Li, P. Zhang, S. Al Moubayed, S. N. Patel, and A. P. Sample. Id-match: A hybrid computer vision and rfid system for recognizing individuals in groups. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 4933– 4944, New York, NY, USA, 2016. ACM.
[42] R.-H. Liang, L. Chan, H.-Y. Tseng, H.-C. Kuo, D.-Y. Huang, D.-N. Yang, and B.-Y. Chen. Gaussbricks: Magnetic building blocks for constructive tangible interactions on portable 123 BIBLIOGRAPHY displays. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems, CHI ’14, pages 3153–3162, New York, NY, USA, 2014. ACM.
[43] R.-H. Liang, L. Chan, H.-Y. Tseng, H.-C. Kuo, D.-Y. Huang, D.-N. Yang, and B.-Y. Chen. Gaussbricks: Magnetic building blocks for constructive tangible interactions on portable displays. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’14, pages 587–590, New York, NY, USA, 2014. ACM.
[44] R.-H. Liang, M.-J. Hsieh, J.-Y. Ke, J.-L. Guo, and B.-Y. Chen. Rfimatch: Distributed batteryless near-field identification using rfid-tagged magnet-biased reed switches. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 473–483, New York, NY, USA, 2018. ACM.
[45] R.-H. Liang, H.-C. Kuo, L. Chan, D.-N. Yang, and B.-Y. Chen. Gaussstones: Shielded magnetic tangibles for multi-token interactions on portable displays. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages 365–372, New York, NY, USA, 2014. ACM.
[46] R.-H. Liang, H.-C. Kuo, L. Chan, D.-N. Yang, and B.-Y. Chen. Gaussstones: Shielded magnetic tangibles for multi-token interactions on portable displays. In ACM UIST 2014 Conference Proceedings, pages 365–372, 2014.
[47] R.-H. Liang, H.-C. Kuo, and B.-Y. Chen. Gaussrfid: Reinventing physical toys using magnetic rfid development kits. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 4233–4237, New York, NY, USA, 2016. ACM.
[48] Y. Lin, M. Chang, H. Chen, and B. Lai. Gain enhancement of ground radiation antenna for rfid tag mounted on metallic plane. IEEE Transactions on Antennas and Propagation, 64(4):1193–1200, April 2016.
[49] N. Marquardt, A. S. Taylor, N. Villar, and S. Greenberg. Rethinking rfid: Awareness and control for interaction with rfid systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages 2307–2316, New York, NY, USA, 2010. ACM.
[50] G. Marrocco. The art of uhf rfid antenna design: impedance-matching and size-reduction techniques. IEEE Antennas and Propagation Magazine, 50(1):66–79, Feb 2008. 124 BIBLIOGRAPHY
[51] G. Marrocco, L. Mattioni, and C. Calabrese. Multiport sensor rfids for wireless passive sensing of objects?asic theory and early results. IEEE Transactions on Antennas and Propagation, 56(8):2691–2702, Aug 2008.
[52] E. S. Martinussen and T. Arnall. Designing with rfid. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, TEI ’09, pages 343–350, New York, NY, USA, 2009. ACM.
[53] T. S. McNerney. From turtles to tangible programming bricks: Explorations in physical language design. Personal Ubiquitous Comput., 8(5):326–337, Sept. 2004.
[54] D. Merrill, J. Kalanithi, and P. Maes. Siftables: Towards sensor network user interfaces. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, TEI ’07, pages 75–78, New York, NY, USA, 2007. ACM.
[55] R. Miesen, F. Kirsch, and M. Vossiek. Uhf rfid localization based on synthetic apertures. volume 10, pages 807–815, July 2013.
[56] T. B. Moeslund and E. Granum. A survey of computer vision-based human motion capture. Comput. Vis. Image Underst., 81(3):231–268, Mar. 2001.
[57] S. Nagels, R. Ramakers, K. Luyten, and W. Deferme. Silicone devices: A scalable diy approach for fabricating self-contained multi-layered soft circuits using microfluidics. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 188:1–188:13, New York, NY, USA, 2018. ACM.
[58] C. Occhiuzzi, C. Paggi, and G. Marrocco. Passive rfid strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation, 59(12):4836–4840, Dec 2011.
[59] M. Ono, B. Shizuki, and J. Tanaka. Touch & activate: Adding interactivity to existing objects using active acoustic sensing. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 31–40, New York, NY, USA, 2013. ACM.
[60] S. Parlak and I. Marsic. Detecting object motion using passive rfid: A trauma resuscitation case study. volume 62, pages 2430–2437, Sept 2013.
[61] J. Patten, H. Ishii, J. Hines, and G. Pangaro. Sensetable: A wireless object tracking platform 125 BIBLIOGRAPHY for tangible user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’01, pages 253–260, New York, NY, USA, 2001. ACM.
[62] M. Philipose, J. R. Smith, B. Jiang, A. Mamishev, S. Roy, and K. Sundara-Rajan. Batteryfree wireless identification and sensing. IEEE Pervasive Computing, 4(1):37–45, Jan. 2005.
[63] M. Philipose, J. R. Smith, B. Jiang, A. Mamishev, S. Roy, and K. Sundara-Rajan. Batteryfree wireless identification and sensing. IEEE Pervasive Computing, 4(1):37–45, Jan 2005.
[64] S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and S. Rangarajan. Rio: A pervasive rfid-based touch gesture interface. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom ’17, pages 261–274, New York, NY, USA, 2017. ACM.
[65] H. S. Raffle, A. J. Parkes, and H. Ishii. Topobo: A constructive assembly system with kinetic memory. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages 647–654, New York, NY, USA, 2004. ACM.
[66] J. Rekimoto. Smartskin: An infrastructure for freehand manipulation on interactive surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’02, pages 113–120, New York, NY, USA, 2002. ACM.
[67] J. Rekimoto, B. Ullmer, and H. Oba. Datatiles: A modular platform for mixed physical and graphical interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’01, pages 269–276, New York, NY, USA, 2001. ACM.
[68] I. Rosenberg and K. Perlin. The unmousepad: An interpolating multi-touch force-sensing input pad. ACM Trans. Graph., 28(3):65:1–65:9, July 2009.
[69] S. Sarkka, V. V. Viikari, M. Huusko, and K. Jaakkola. Phase-based uhf rfid tracking with nonlinear kalman filtering and smoothing. volume 12, pages 904–910, May 2012.
[70] T. Sato, H. Mamiya, H. Koike, and K. Fukuchi. Photoelastictouch: Transparent rubbery tangible interface using an lcd and photoelasticity. In Proceedings of the 22Nd Annual ACM Symposium on User Interface Software and Technology, UIST ’09, pages 43–50, New York, NY, USA, 2009. ACM.
[71] V. Savage, A. Head, B. Hartmann, D. B. Goldman, G. Mysore, and W. Li. Lamello: Passive acoustic sensing for tangible input components. In Proceedings of the 33rd Annual ACM 126 BIBLIOGRAPHY Conference on Human Factors in Computing Systems, CHI ’15, pages 1277–1280, New York, NY, USA, 2015. ACM.
[72] E. J. Selker. Manually operated switch for enabling and disabling an rfid card, Mar. 8 2005. US Patent 6,863,220.
[73] A. Spielberg, A. Sample, S. E. Hudson, J. Mankoff, and J. McCann. Rapid: A framework for fabricating low-latency interactive objects with rfid tags. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 5897–5908, New York, NY, USA, 2016. ACM.
[74] A. Spielberg, A. Sample, S. E. Hudson, J. Mankoff, and J. McCann. Rapid: A framework for fabricating low-latency interactive objects with rfid tags. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 5897–5908. ACM, 2016.
[75] B. Ullmer and H. Ishii. The metadesk: Models and prototypes for tangible user interfaces. In ACM UIST 1997 Conference Proceedings, pages 223–232, 1997.
[76] B. Ullmer and H. Ishii. The metadesk: Models and prototypes for tangible user interfaces. In ACM UIST 1997 Conference Proceedings, pages 223–232, 1997.
[77] B. Ullmer, H. Ishii, and R. J. K. Jacob. Token+constraint systems for tangible interaction with digital information. ACM Trans. Comput.-Hum. Interact., 12(1):81–118, Mar. 2005.
[78] N. Villar, D. Cletheroe, G. Saul, C. Holz, T. Regan, O. Salandin, M. Sra, H.-S. Yeo,W. Field, and H. Zhang. Project zanzibar: A portable and flexible tangible interaction platform. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 515:1–515:13, New York, NY, USA, 2018. ACM.
[79] J. Wang, O. Abari, and S. Keshav. Challenge: Rfid hacking for fun and profit. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, MobiCom ’18, pages 461–470, New York, NY, USA, 2018. ACM.
[80] J. Wang and D. Katabi. Dude, where’s my card?: Rfid positioning that works with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 51–62, New York, NY, USA, 2013. ACM.
[81] J.Wang, D. Vasisht, and D. Katabi. Rf-idraw: Virtual touch screen in the air using rf signals. 127 BIBLIOGRAPHY In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 235– 246, New York, NY, USA, 2014. ACM.
[82] R. Watanabe, Y. Itoh, M. Asai, Y. Kitamura, F. Kishino, and H. Kikuchi. The soul of activecube: Implementing a flexible, multimodal, three-dimensional spatial tangible interface. Comput. Entertain., 2(4):15–15, Oct. 2004.
[83] M. Weiser. The computer for the 21st century. Scientific american, 265(3):94–104, 1991.
[84] M. Weiss, F. Schwarz, S. Jakubowski, and J. Borchers. Madgets: Actuating widgets on interactive tabletops. In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, pages 293–302, New York, NY, USA, 2010. ACM.
[85] M. Weiss, J. Wagner, Y. Jansen, R. Jennings, R. Khoshabeh, J. D. Hollan, and J. Borchers. Slap widgets: Bridging the gap between virtual and physical controls on tabletops. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 481–490, New York, NY, USA, 2009. ACM.
[86] C. Williams, X. D. Yang, G. Partridge, J. Millar-Usiskin, A. Major, and P. Irani. Tzee: Exploiting the lighting properties of multi-touch tabletops for tangible 3d interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 1363–1372, New York, NY, USA, 2011. ACM.
[87] A. D. Wilson. Playanywhere: A compact interactive tabletop projection-vision system. In Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, UIST ’05, pages 83–92, New York, NY, USA, 2005. ACM.
[88] R. Xiao, C. Harrison, and S. E. Hudson. Worldkit: Rapid and easy creation of ad-hoc interactive applications on everyday surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages 879–888, New York, NY, USA, 2013. ACM.
[89] J. Y. Han. Low-cost multi-touch sensing through frustrated total internal reaction. pages 115–118, 01 2005.
[90] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proceedings of the 20th Annual 128 BIBLIOGRAPHY International Conference on Mobile Computing and Networking, MobiCom ’14, pages 237– 248, New York, NY, USA, 2014. ACM.
[91] N.-H. Yu, L.-W. Chan, S. Y. Lau, S.-S. Tsai, I.-C. Hsiao, D.-J. Tsai, F.-I. Hsiao, L.-P. Cheng, M. Chen, P. Huang, and Y.-P. Hung. Tuic: Enabling tangible interaction on capacitive multitouch displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2995–3004, New York, NY, USA, 2011. ACM.
[92] N.-H. Yu, L.-W. Chan, S. Y. Lau, S.-S. Tsai, I.-C. Hsiao, D.-J. Tsai, F.-I. Hsiao, L.-P. Cheng, M. Chen, P. Huang, and Y.-P. Hung. Tuic: Enabling tangible interaction on capacitive multitouch displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2995–3004, New York, NY, USA, 2011. ACM.
[93] Y. Zeroukhi, E. Napieralska-Juszczak, G. Vega, K. Komeza, F. Morganti, and S. Wiak. Dependence of the contact resistance on the design of stranded conductors. Sensors, (8):13925–13942, 2014.
[94] T. Zhang, N. Becker, Y. Wang, Y. Zhou, and Y. Shi. Bitid: Easily add battery-free wireless sensors to everyday objects. In 2017 IEEE International Conference on Smart Computing (SMARTCOMP), pages 1–8, May 2017.
[95] T. Zhang, N. Becker, Y. Wang, Y. Zhou, and Y. Shi. Bitid: Easily add battery-free wireless sensors to everyday objects. In 2017 IEEE International Conference on Smart Computing (SMARTCOMP), pages 1–8, May 2017.
[96] Y. Zhang, G. Laput, and C. Harrison. Electrick: Low-cost touch sensing using electric field tomography. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 1–14, New York, NY, USA, 2017. ACM.
[97] S. Zhu and Y. Li. 2dr: Towards fine-grained 2-d rfid touch sensing. arXiv preprint arXiv:1808.08808, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21630-
dc.description.abstract有形使用者介面讓使用者能夠透過實體物件或手指觸摸直接與 數位內容進行互動。然而,現有技術很難提供容易擴展又可靠的感 應能力讓使用者能操作大量實體物件。甚至,使用者體驗也受限於 現有硬體設計,例如視覺回饋會受到不透明的物體遮蔽而降低,部 分使用操作的自由度會因內嵌式的感應器需要嚴格對齊並實體連接 而減弱。因此,我們透過超高頻無線射頻感應技術開發一個容易擴 展且穩定可靠的互動感應系統,RFISensing,能夠同時感應大量物 體的互動操作,如擺放、堆疊及觸摸事件等。為了增加視覺操作體 驗,RFISensing提出一種新穎的直立式觸摸螢幕及透明硬體設計讓系 統能同時支持有形+觸摸操作,使用者也能同時享受有形的互動使用 者介面(TUI)和圖像化使用者介面(GUI)操作的好處及良好的視覺回饋 體驗。此外,RFISensing透過整合磁力感應技術開發一種穿戴式或可 嵌入式的非接觸式的近場(near-surface)身分感應識別技術去解決對齊 的嚴格限制,並且提供使用者三種互動模式,如使用者對使用者、 使用者對物件、物件對物件的互動操作。最後,為了提高操作自由 度,RFISensing開發一種無線和可擴展的模組化傳感器,能夠提供使 用者在普及計算應用環境中更精細的二維觸摸操作。zh_TW
dc.description.abstractThe tangible user interface allows the user to directly interact with digital content through physical objects or finger touches. However, the prior arts are difficult to provide the scalable and reliable sensing to interact with large physical objects. Moreover, the current hardware design limited user experience. For example, the opaque objects reduced the visual experience, and the requirement of sensors strictly aligning and physically connecting decreased the operational freedom. Therefore, we developed RFISensing, a reliable and scalable interactive system based on Ultra High Frequency Radio Frequency Identification for detecting the interactions of a large number of objects, including placement, stacking and touch. To increase the visual experience, RFISensing also proposes a novel vertical touch screen and transparent hardware design to enable tangible + touch operations, and users can simultaneously obtain the benefits of TUI and GUI operations and avoid parallax problem. Moreover, RFISensing develops the wearable and embeddable noncontact near-field identity sensing to solve the strict restrictions of alignment by integrating magnetic sensing, and provides users with three interactive modes, such as user-to-user and user, user-to-object, objects, and object-to-object. Finally, to increase the freedom of user interaction, RFISensing has developed a wireless and scalable modular sensor that provides users with a more granular two-dimensional touch operation in a ubiquitous computing environment.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:40:24Z (GMT). No. of bitstreams: 1
ntu-108-D00922020-1.pdf: 33838162 bytes, checksum: 7ef64b16b18daf408afc730b0f74a7d2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 RFIBricks - Interactive Building Blocks Based on RFID . . . . . . 4
1.2.2 RFIDesk - is an interactive surface supporting both multi-touch and rich-ID stackable tangible interactions . . . . . . . . . . . . . 5
1.2.3 RFIWall - A Vertical Touchscreen That Supports Rich-ID Stacking . . . . 5
1.2.4 RFIMatch - Contactless Distributed Identification Using RFID Tagged Magnet-Biased Reed Switches . . . . . . . . . . . . . . . . 7
1.2.5 RFTouchPads - Wireless Modular Touch Sensor Pads Based on RFID . . . . . . 7
1.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 Related Work 10
2.1 Stackable Tangible Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Touchable Tangible Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Transparent Tangible Design . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Contactless Tangible Interaction . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 RFID Sensing Based Tangible Interaction . . . . . . . . . . . . . . . . . . . 14
2.5.1 RFID Sensing Based Tangible Interaction . . . . . . . . . . . . . . 14
2.5.2 RFID Sensing Based Touch Interaction . . . . . . . . . . . . . . . 16
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Chapter 3 RFIBricks: Interactive Building Blocks Based on RFID 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 DESIGN AND IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Modifying RFID tags as Rich-ID Contact Switches . . . . . . . . 23
3.2.4 Designing Lego-like Interactive Building Blocks . . . . . . . . . . 24
3.2.5 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Physical Modeling & Tangible Interaction . . . . . . . . . . . . . . 29
3.3.2 Stackable Token+Constraint Interaction on Tabletop . . . . . . . . 30
3.3.3 Tangible Programming . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Modular Remote Controller . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Pilot Session: Responsiveness vs. Tag Amount . . . . . . . . . . . 33
3.4.2 Session 1: Stack Sensing Capability vs Location . . . . . . . . . . 33
3.4.3 Session 2: Stack Sensing Capability vs. Stacking Volume . . . . . 35
3.4.4 Session 3: Stacking Sensing Capability vs. Antenna Grid . . . . . 36
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Concurrent Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Side-by-Side Connection . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Scalability and Responsiveness . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Incorporating Other RFID Sensing Techniques . . . . . . . . . . . 38
Chapter 4 RFIWall: A Vertical Touchscreen That Supports Rich-ID Stacking 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 SENSING PRINCIPLES AND SYSTEM DESIGN . . . . . . . . . . . . . 42
4.2.1 UHF RFID Stacking Sensing . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Integration of Capacitive Touch Sensing and UHF RFID Stack Sensing . . . . 46
4.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 The RFIWall Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Tiles and Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Exploratory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Session 1: Stack Sensing Capability . . . . . . . . . . . . . . . . . 49
4.4.2 Session 2: Touch Sensing Capability . . . . . . . . . . . . . . . . . 51
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Tangible Gaming: Touch on Tokens . . . . . . . . . . . . . . . . . 53
4.5.2 Tangible Programming: Touch on Tools . . . . . . . . . . . . . . . 53
4.5.3 Tangible File Management: Touch and Gestures on Container . . 54
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Chapter 5 RFIDesk: an interactive surface that enables both multi-touch and rich-ID stackable tangible interactions. 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.1 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter 6 RFIMatch: Distributed Batteryless Near-Field Identification Using
RFID-Tagged Magnet-Biased Reed Switches 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.1 Scenario: Smart Showroom . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Benefits and Contributions . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Designing RFIMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Redesigning reed switches for ID . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.1 Understanding Uses of a Reed Switch . . . . . . . . . . . . . . . . 70
6.3.2 Correlated State Change Through Magnetic Interactions . . . . . 72
6.3.3 Native Haptic Feedback . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4 Explorative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.1 Session 1: Internal Validity of Reed Switch . . . . . . . . . . . . . 74
6.4.2 Session 2: External Validity of Reed Switch . . . . . . . . . . . . . 75
6.5 RFIMatch Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.1 Session 1: Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6.2 Session 2: Sensing Volume . . . . . . . . . . . . . . . . . . . . . . 82
6.6.3 Session 3: Timespan . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.7.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.7.2 Simultaneous Interaction . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7.4 Wearability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.7.5 Operation Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Chapter 7 RFTouchPads: Wireless Modular Touch Sensor Pads Based on RFID 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Sensing Finger Touch Using a UHF RFID Tag . . . . . . . . . . . 93
7.2.2 Increasing the Touch Sensing Resolution . . . . . . . . . . . . . . 94
7.2.3 Increasing the Touch Sensing Area . . . . . . . . . . . . . . . . . . 95
7.3 Designing StickerPads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1 1D StickerPads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.2 2D StickerPads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Designing TilePads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.1 Designing One-Fold Antenna for TilePads . . . . . . . . . . . . . . 102
7.4.2 Extending the Antenna for Better Sensitivity . . . . . . . . . . . . 104
7.4.3 Sensing Distance vs. Number of Extension Layers . . . . . . . . . 105
7.4.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5.1 Controlling a Playlist with an On-Body StickerPad . . . . . . . . . 108
7.5.2 Prototyping Touch Input Devices with a Grid of TilePads . . . . . 109
7.5.3 Adding Interactivity to Printed Paper with TilePads . . . . . . . . 111
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6.1 Multi-touch and Contact Shape Sensing . . . . . . . . . . . . . . . 112
7.6.2 Antenna Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6.3 Flexibility and Scalability . . . . . . . . . . . . . . . . . . . . . . . 114
7.6.4 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6.5 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6.6 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Chapter 8 Conclusions and Future Work . . . . . . 117
Bibliography . . . . . . 119
dc.language.isozh-TW
dc.title運用超高頻無線射頻感應技術設計實體互動操作介面zh_TW
dc.titleDesigning Scalable and Reliable Tangible Interfaces Based on UHF RFIDen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee歐陽明,洪一平,黃大源,詹力韋,鄭龍磻
dc.subject.keyword無線射頻識別技術,實體互動,堆疊操作,觸摸操作,非接觸式操作,zh_TW
dc.subject.keywordRFID,Tangible Interaction,Stack Interaction,Touch Interaction,Contactless Interaction,en
dc.relation.page129
dc.identifier.doi10.6342/NTU201901163
dc.rights.note未授權
dc.date.accepted2019-07-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
33.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved