請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21593
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李文宗 | |
dc.contributor.author | Chia-Chun Wang | en |
dc.contributor.author | 王嘉儁 | zh_TW |
dc.date.accessioned | 2021-06-08T03:39:05Z | - |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-15 | |
dc.identifier.citation | 1. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Lippincott Williams & Wilkins; 2008.
2. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97-111. 3. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society Series A (Statistics in Society) 2009;172(1):137-159. 4. Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration; 2011. 5. Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Stat Med. 1998;17(8):841-856. 6. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-1558. 7. Kalil AC, Van Schooneveld TC, Fey PD, Rupp ME. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: a systematic review and meta-analysis. JAMA. 2014;312(15):1552-1564. 8. Kivimäki M, Jokela M, Nyberg ST, et al. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet. 2015;386(10005):1739-1746. 9. Casella G, Berger RL. Statistical Inference. 2nd ed. Thomson Learning; 2002. 10. Chiolero A, Santschi V, Burnand B, Platt RW, Paradis G. Meta-analyses: with confidence or prediction intervals? Eur J Epidemiol. 2012;27(10):823-825. 11. Graham PL, Moran JL. Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries. J Clin Epidemiol. 2012;65(5):503-510. 12. Guddat C, Grouven U, Bender R, Skipka G. A note on the graphical presentation of prediction intervals in random-effects meta-analyses. Syst Rev. 2012;1:34. 13. IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016;6(7):e010247. 14. Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028-1038. 15. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188. 16. Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014;160(4):267-270. 17. Viechtbauer W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. Journal of Educational and Behavioral Statistics. 2005;30(3):261-293. 18. Paule RC, Mandel J. Consensus Values and Weighting Factors. Journal of Research of the National Bureau of Standards. 1982;87(5):377. 19. Dempster AP, Rubin DB, Tsutakawa RK. Estimation in Covariance Components Models. Journal of the American Statistical Association. 1981;76(374):341-353. 20. Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Methods. 2017;8(2):181-198. 21. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79. 22. Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954;10(1):101-129. 23. Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Stat Med. 2008;27(3):418-434. 24. Yamaguchi Y, Maruo K, Partlett C, Riley RD. A random effects meta-analysis model with Box-Cox transformation. BMC Med Res Methodol. 2017;17(1):109. 25. Burr D, Doss H. A Bayesian Semiparametric Model for Random-Effects Meta-Analysis. Journal of the American Statistical Association. 2005;100(469):242-251. 26. Ohlssen DI, Sharples LD, Spiegelhalter DJ. Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Stat Med. 2007;26(9):2088-2112. 27. Böhning D. Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Methods Inf Med. 2005;44(1):127-135. 28. Laird N. Nonparametric Maximum Likelihood Estimation of a Mixing Distribution. Journal of the American Statistical Association. 1978;73(364):805-811. 29. Van Houwelingen HC, Zwinderman KH, Stijnen T. A bivariate approach to meta-analysis. Stat Med. 1993;12(24):2273-2284. 30. Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81(12):2141-2155. 31. Louis TA. Estimating a Population of Parameter Values Using Bayes and Empirical Bayes Methods. Journal of the American Statistical Association. 1984;79(386):393-398. 32. Louis TA. Using empirical Bayes methods in biopharmaceutical research. Stat Med. 1991;10(6):811-827; discussion 828-829. 33. Sheather SJ, Jones MC. A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. Journal of the Royal Statistical Society Series B (Methodological). 1991;53(3):683-690. 34. Dechartres A, Trinquart L, Boutron I, Ravaud P. Influence of trial sample size on treatment effect estimates: meta-epidemiological study. BMJ. 2013;346:f2304. 35. Davey J, Turner RM, Clarke MJ, Higgins JP. Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Medical Research Methodology. 2011;11(1):160. 36. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634. 37. Simonsohn U, Nelson LD, Simmons JP. P-curve: a key to the file-drawer. J Exp Psychol Gen. 2014;143(2):534-547. 38. Storey JD, Taylor JE, Siegmund D. Strong Control, Conservative Point Estimation and Simultaneous Conservative Consistency of False Discovery Rates: A Unified Approach. Journal of the Royal Statistical Society Series B (Statistical Methodology). 2004;66(1):187-205. 39. Mustafic H, Jabre P, Caussin C, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307(7):713-721. 40. Hole J, Hirsch M, Ball E, Meads C. Music as an aid for postoperative recovery in adults: a systematic review and meta-analysis. Lancet. 2015;386(10004):1659-1671. 41. Kavalieratos D, Corbelli J, Zhang D, et al. Association Between Palliative Care and Patient and Caregiver Outcomes: A Systematic Review and Meta-analysis. JAMA. 2016;316(20):2104-2114. 42. Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J. Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med. 2012;9(1):e1001162. 43. Wang CC, Lee WC. A simple method to estimate prediction intervals and predictive distributions: Summarizing meta-analyses beyond means and confidence intervals. Res Synth Methods. 2019;10(2):255-266. 44. Dempster AP, Ryan LM. Weighted Normal Plots. Journal of the American Statistical Association. 1985;80(392):845-850. 45. Royston P. Approximating the Shapiro-Wilk W-test for non-normality. Stat Comput. 1992;2(3):117-119. 46. Royston P. Remark AS R94: A Remark on Algorithm AS 181: The W-test for Normality. Journal of the Royal Statistical Society Series C (Applied Statistics). 1995;44(4):547-551. 47. Wang MC, Bushman BJ. Using the normal quantile plot to explore meta-analytic data sets. Psychological Methods. 1998;3(1):46-54. 48. Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med. 2017;12(1):103-111. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21593 | - |
dc.description.abstract | 隨機效應模型統合分析是目前主流的研究統整方法。在此方法中,統合分析中各研究的異質性常被假設為常態分布,但這其實是一個很強的假設,且常常未被注意或是驗證。雖然已有統計方法可評估常態分布假設,但在統合分析中由於個別研究的研究本身標準誤不同,目前的方法並無法直接應用。我們首先提出了標準化方法,以統計檢定與分位-分位圖來評估統合分析中的常態分布假設。模擬研究顯示這樣的方式有著控制良好的型一誤差率且也有一定的統計檢定力。若常態分布假設不成立,則呈現未來研究分布的預測區間估計也會受到影響。因此,我們也提出了無母數的方法以估計預測區間與預測分布。模擬研究顯示這樣的方法與現行應用常態分布假設的方法相比,可以得到更為不偏的估計。我們系統性地回顧了高影響因子的期刊上刊登的統合分析,發現在真實研究中,常態分布假設的確不能一體適用。我們並提供了真實的統合分析例子來呈現分析非常態異質性的重要。 | zh_TW |
dc.description.abstract | Random-effects meta-analysis is one of the mainstream methods for research synthesis. The heterogeneity in meta-analyses is usually assumed to follow a normal distribution. This is a strong assumption which often receives little attention and is used without justification. Although methods for assessing the normality assumption are readily available, they cannot be used directly because the included studies have different within-study standard errors. We first present a standardization framework for evaluation of the normality assumption. We use both a formal statistical test and a quantile–quantile plot for visualization. Simulation studies show that our normality test has well-controlled type I error rates and reasonable power. Prediction intervals show the range of true effects in future studies and have been advocated to be regularly presented. We provide a simple method to estimate prediction intervals and predictive distributions nonparametrically when the normality assumption is implausible. Simulation studies show that this new method can provide approximately unbiased estimates compared with the conventional method. We then examine the normality assumption in real-world meta-analyses with a meta-epidemiological study. Systematically reviewing meta-analyses in high-impact journals, we find that the normality assumption is not universally applicable in meta-analyses. Real examples are also provided to illustrate the significance of analyzing non-normal heterogeneity in meta-analyses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:39:05Z (GMT). No. of bitstreams: 1 ntu-108-D03849001-1.pdf: 3625623 bytes, checksum: aa750e52ff9cbb56c3a4d2a1cdf49871 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii ㄧ、緒論 1 (一) 背景 1 (二) 現有統合分析方法回顧 4 (三) 研究目的 7 二、方法 9 (一) 統合分析中常態分布假設評估方法 9 (二) 非常態分布異質性下之預測區間估計方法 10 (三) 非常態分布異質性下之預測分布估計方法 12 三、模擬 14 (一) 統合分析中常態分布假設評估─模擬設定及結果 14 (二) 非常態分布異質性下之預測區間估計方法─模擬設定及結果 17 四、系統性文獻回顧 20 (一) 文獻回顧方法 20 (二) 文獻回顧結果 21 五、實例驗證 24 (一) 空氣汙染與心肌梗塞的關係 24 (二) 音樂對手術後恢復的影響 25 (三) 緩解性醫療的成效 25 (四) 衛生措施預防寄生蟲的效果 27 六、討論 28 七、結論 32 參考文獻 33 圖註 43 附錄 57 | |
dc.language.iso | zh-TW | |
dc.title | 統合分析中非常態異質性之評估與處理 | zh_TW |
dc.title | Assessment and Management of Non-normal Heterogeneity in Meta-analyses | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳錦華,杜裕康,蕭朱杏,林先和,黃彥棕 | |
dc.subject.keyword | 統合分析,常態分布假設,常態檢定,分位-分位圖,預測區間,預測分布, | zh_TW |
dc.subject.keyword | meta?analysis,normality assumption,normality test,quantile–quantile plot,prediction interval,predictive distribution, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU201901436 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-15 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。