Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭超隆
dc.contributor.authorTzu-Hsiang Laien
dc.contributor.author賴子詳zh_TW
dc.date.accessioned2021-06-08T03:38:34Z-
dc.date.copyright2019-07-23
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citation1 Rizvi, S. A. A. & Saleh, A. M. Applications of nanoparticle systems in drug delivery technology. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society 26, 64-70, doi:10.1016/j.jsps.2017.10.012 (2018).
2 De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles:applications and hazards. International journal of nanomedicine 3, 133-149 (2008).
3 Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews 54, 631-651, doi:https://doi.org/10.1016/S0169-409X(02)00044-3 (2002).
4 Lee, E. J., Lee, N. K. & Kim, I.-S. Bioengineered protein-based nanocage for drug delivery. Advanced drug delivery reviews 106, 157-171, doi:https://doi.org/10.1016/j.addr.2016.03.002 (2016).
5 Maham, A., Tang, Z., Wu, H., Wang, J. & Lin, Y. Protein-based nanomedicine platforms for drug delivery. Small (Weinheim an der Bergstrasse, Germany) 5, 1706-1721, doi:10.1002/smll.200801602 (2009).
6 Klovins, J., Overbeek, G. P., van den Worm, S. H., Ackermann, H. W. & van Duin, J. Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. The Journal of general virology 83, 1523-1533, doi:10.1099/0022-1317-83-6-1523 (2002).
7 Shishovs, M. et al. Structure of AP205 Coat Protein Reveals Circular Permutation in ssRNA Bacteriophages. J Mol Biol 428, 4267-4279, doi:10.1016/j.jmb.2016.08.025 (2016).
8 Rumnieks, J. & Tars, K. Crystal Structure of the Bacteriophage Qβ Coat Protein in Complex with the RNA Operator of the Replicase Gene. Journal of Molecular Biology 426, 1039-1049, doi:https://doi.org/10.1016/j.jmb.2013.08.025 (2014).
9 Lago, H., Parrott, A. M., Moss, T., Stonehouse, N. J. & Stockley, P. G. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA. J Mol Biol 305, 1131-1144, doi:10.1006/jmbi.2000.4355 (2001).
10 Brillault, L. et al. Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery. ACS Nano 11, 3476-3484, doi:10.1021/acsnano.6b07747 (2017).
11 Carlee E. Ashley, O,* Eric C. Carnes,‡ Genevieve K. Phillips,§ Paul N. Durfee,# Mekensey D. Buley,^ Christopher A. Lino,# David P. Padilla,† Brandy Phillips,§ Mark B. Carter,§ Cheryl L. Willman,§,z C. Jeffrey Brinker,†,‡,§,#,r Jerri do Carmo Caldeira,# Bryce Chackerian,§,# Walker Wharton,§,z and David S. Peabody§,#. Cell-Specific Delivery ofDiverse Cargos byBacteriophageMS2 Virus-like Particles. (2011).
12 Fiedler, J. D., Brown, S. D., Lau, J. L. & Finn, M. G. RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed Engl 49, 9648-9651, doi:10.1002/anie.201005243 (2010).
13 Rhee, J. K. et al. Colorful virus-like particles: fluorescent protein packaging by the Qbeta capsid. Biomacromolecules 12, 3977-3981, doi:10.1021/bm200983k (2011).
14 Spohn, G. et al. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7, 146, doi:10.1186/1743-422X-7-146 (2010).
15 Brune, K. D. et al. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Scientific Reports 6, 19234, doi:10.1038/srep19234 (2016).
16 Cortes-Perez, N. G. et al. Rotavirus-like particles: a novel nanocarrier for the gut. J Biomed Biotechnol 2010, 317545, doi:10.1155/2010/317545 (2010).
17 Pan, Y. et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7, 5957-5967, doi:10.2147/IJN.S37990 (2012).
18 Stephanopoulos, N., Tong, G. J., Hsiao, S. C. & Francis, M. B. Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells. ACS Nano 4, 6014-6020, doi:10.1021/nn1014769 (2010).
19 Cielens, I. et al. Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 56, 459-469, doi:10.1007/s12033-014-9743-3 (2014).
20 Peabody, D. S. et al. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380, 252-263, doi:10.1016/j.jmb.2008.04.049 (2008).
21 Tissot, A. C. et al. Versatile Virus-Like Particle Carrier for Epitope Based Vaccines. PLOS ONE 5, e9809, doi:10.1371/journal.pone.0009809 (2010).
22 Thrane, S. et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. Journal of Nanobiotechnology 14, 30, doi:10.1186/s12951-016-0181-1 (2016).
23 Hovlid, M. L. et al. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS nano 8, 8003-8014, doi:10.1021/nn502043d (2014).
24 Yildiz, I. et al. Engineering of Brome mosaic virus for biomedical applications. RSC Adv 2, 3670-3677, doi:10.1039/C2RA01376B (2012).
25 Ashley, C. E. et al. Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano 5, 5729-5745, doi:10.1021/nn201397z (2011).
26 Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem 25, 1602-1608, doi:10.1021/bc500320j (2014).
27 Dhindwal, S., Feng, S. & Khayat, R. The Arginines in the N-Terminus of the Porcine Circovirus 2 Virus like Particles Are Responsible for Disrupting the Membranes at Neutral and Acidic pH. J Mol Biol, doi:10.1016/j.jmb.2019.05.044 (2019).
28 Bosscha, M. I., van Dissel, J. T., Kuijper, E. J., Swart, W. & Jager, M. J. The efficacy and safety of topical polymyxin B, neomycin and gramicidin for treatment of presumed bacterial corneal ulceration. The British journal of ophthalmology 88, 25-28 (2004).
29 Wang, L. et al. Allosteric control of the ribosome by small-molecule antibiotics. Nature structural & molecular biology 19, 957-963, doi:10.1038/nsmb.2360 (2012).
30 Prokhorova, I. et al. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proceedings of the National Academy of Sciences 114, E10899-E10908, doi:10.1073/pnas.1715501114 (2017).
31 Huth, M. E., Ricci, A. J. & Cheng, A. G. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. International journal of otolaryngology 2011, 937861, doi:10.1155/2011/937861 (2011).
32 Ruben, R. J. & Daly, J. F. Neomycin ototoxicity and nephrotoxicity. A case report following oral administration. The Laryngoscope 78, 1734-1737, doi:10.1288/00005537-196810000-00006 (1968).
33 Pazhayattil, G. S. & Shirali, A. C. Drug-induced impairment of renal function. International journal of nephrology and renovascular disease 7, 457-468, doi:10.2147/IJNRD.S39747 (2014).
34 Maurin, M. & Raoult, D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrobial agents and chemotherapy 45, 2977-2986, doi:10.1128/AAC.45.11.2977-2986.2001 (2001).
35 Luedtke, N. W., Carmichael, P. & Tor, Y. Cellular Uptake of Aminoglycosides, Guanidinoglycosides, and Poly-arginine. Journal of the American Chemical Society 125, 12374-12375, doi:10.1021/ja0360135 (2003).
36 Moliterni, A. et al. HER2 Overexpression and Doxorubicin in Adjuvant Chemotherapy for Resectable Breast Cancer. Journal of Clinical Oncology 21, 458-462, doi:10.1200/JCO.2003.04.021 (2003).
37 López-González, A. et al. The role of anthracyclines in small cell lung cancer. Annals of translational medicine 1, 5-5, doi:10.3978/j.issn.2305-5839.2013.01.05 (2013).
38 Lamm, D. L. et al. A Randomized Trial of Intravesical Doxorubicin and Immunotherapy with Bacille Calmette–Guérin for Transitional-Cell Carcinoma of the Bladder. New England Journal of Medicine 325, 1205-1209, doi:10.1056/NEJM199110243251703 (1991).
39 Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nature reviews. Cancer 9, 338-350, doi:10.1038/nrc2607 (2009).
40 Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226, 466-468 (1984).
41 Doroshow, J. H. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. Proc Natl Acad Sci U S A 83, 4514-4518 (1986).
42 Weinstein, D. M., Mihm, M. J. & Bauer, J. A. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. The Journal of pharmacology and experimental therapeutics 294, 396-401 (2000).
43 Kim, Y. et al. Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Molecular pharmacology 63, 368-377 (2003).
44 Arola, O. J. et al. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer research 60, 1789-1792 (2000).
45 Gomari, H., Forouzandeh Moghadam, M. & Soleimani, M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. OncoTargets and therapy 11, 5753-5762, doi:10.2147/OTT.S173110 (2018).
46 Niu, G., Cogburn, B. & Hughes, J. Preparation and characterization of doxorubicin liposomes. Methods Mol Biol 624, 211-219, doi:10.1007/978-1-60761-609-2_14 (2010).
47 Eliaz, R. E. & Szoka, F. C. Liposome-encapsulated Doxorubicin Targeted to CD44. Cancer research 61, 2592 (2001).
48 Caldeira, J. C. & Peabody, D. S. Stability and assembly in vitro of bacteriophage PP7 virus-like particles. J Nanobiotechnology 5, 10, doi:10.1186/1477-3155-5-10 (2007).
49 Guo, P. et al. Rapid and simplified purification of recombinant adeno-associated virus. Journal of virological methods 183, 139-146, doi:10.1016/j.jviromet.2012.04.004 (2012).
50 Orzechowska, E. J., Girstun, A., Staron, K. & Trzcinska-Danielewicz, J. Synergy of BID with doxorubicin in the killing of cancer cells. Oncol Rep 33, 2143-2150, doi:10.3892/or.2015.3841 (2015).
51 Thorn, C. F. et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics and genomics 21, 440-446, doi:10.1097/FPC.0b013e32833ffb56 (2011).
52 Stuart, C. H. et al. Site-specific DNA-doxorubicin conjugates display enhanced cytotoxicity to breast cancer cells. Bioconjug Chem 25, 406-413, doi:10.1021/bc4005427 (2014).
53 Gao, Y. G. & Wang, A. H. Crystal structures of four morpholino-doxorubicin anticancer drugs complexed with d(CGTACG) and d(CGATCG): implications in drug-DNA crosslink. Journal of biomolecular structure & dynamics 13, 103-117, doi:10.1080/07391102.1995.10508824 (1995).
54 Yildiz, I., Lee, K. L., Chen, K., Shukla, S. & Steinmetz, N. F. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: Cargo-loading and delivery. Journal of Controlled Release 172, 568-578, doi:https://doi.org/10.1016/j.jconrel.2013.04.023 (2013).
55 Galaway, F. A. & Stockley, P. G. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10, 59-68, doi:10.1021/mp3003368 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21578-
dc.description.abstract小分子藥物經常使用在癌症治療中,儘管這些小分子在進入人體後並不具有標靶性。具有療效的小分子通常會引起副作用。為了避免這些副作用,科學家們嘗試發展出一種可以將藥物精準地標靶至特定癌化組織的運送載體。類病毒顆粒蛋白是由病毒的衣殼蛋白(capsid)所構成,為一種奈米等級大小且具有自體組裝特性的蛋白質載體。其表面可經由化學修飾或基因工程表達標靶胜肽(targeting peptide)和抗原表位(epitope)。目前為止,Qβ、MS2和HBVc類病毒顆粒蛋白常被研究應用在疫苗領域或是做為運輸載體。在本研究中,我利用AP205類病毒顆粒蛋白包裹兩種抗生素,阿黴素(doxorubicin)和新黴素(neomycin)。將兩種抗生素和T4多聚核苷酸酶(T4 PNK)催化之硫代磷酸化髮夾核糖核酸(phosphorothioated RNA hairpin)利用胺基硫基交聯劑(amine-to-sulfhydryl crosslinker)進行共價鍵結。髮夾核糖核酸對AP205次蛋白衣(capsomere)有親和作用力,可以藉此將鍵結抗生素的髮夾核糖核酸包裹在類病毒顆粒蛋白中。我成功地在試管內組裝了包裹抗生素的AP205類病毒顆粒蛋白,並稱之為AP205 VLPs dox和AP205 VLPs neo。但是AP205 VLPs dox和AP205 VLPs neo在癌細胞實驗中沒有毒殺效果的表現。實驗數據表示造成細胞毒殺能力低落的原因可能是髮夾核糖核酸的硫代磷酸化效率過低,導致在類病毒顆粒蛋白中的藥物攜帶量不足。在未來的實驗中,我們須進一步研究如何增加阿黴素和新黴素對髮夾核糖核酸的鍵結效率。zh_TW
dc.description.abstractNowadays, small molecular drugs are used for chemotherapy to treat cancer diseases despite that these small molecules are non-targeting drugs. However, all efficacious drugs have adverse side effects. In order to avoid these unwanted hazards, scientists dedicate efforts to develop a carrier, which is capable of delivering drugs to target cancer cells precisely instead of anonymously. VLPs (Virus like particles) is a nanoscale self-assembled protein-based cage that is composed of only capsid from virus. The surface of capsid is tolerated with chemical modifications or genetic engineering to present the targeting peptides and epitopes. By far, the Qβ, MS2, and HBVc VLPs have been extensively studied in application of vaccine and drug delivery. In this study, the AP205 VLPs are used to encapsulate two small molecular drugs, doxorubicin (dox) and neomycin (neo), through the RNA hairpin-capsomere interactions. The encapsulated RNA hairpin is phosphorothioated by T4 PNK reaction, and then covalently coupled with dox or neo through amine-to-sulfhydryl crosslinker. The AP205 VLPs dox and AP205 VLPs neo are packed successfully in vitro. However, both the in vitro packed VLPs show low cytotoxicity towards cancer cells, which indicates that low coupling efficiency of dox/neo to the RNA hairpin, contributing to a low level of compound loading within the VLPs. The dox/neo and RNA hairpin coupling require further investigations in future works.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:38:34Z (GMT). No. of bitstreams: 1
ntu-108-R06B46012-1.pdf: 2837866 bytes, checksum: 073720cc28cbad9a55343edca06571db (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
CHAPTER 1: INTRODUCTION 1
1.1 The virus like particles derived from the bacteriophage AP205 2
1.2 The pros and cons of using AP205 VLPs as a drug delivery material 5
1.3 Antibiotics 7
1.4 The aim of this study 10
CHAPTER 2: MATERIALS AND METHODS 11
2.1 Construction of expression vector 11
2.1.1 AP205 coat protein plasmid construction 11
2.1.2 RNA hairpin plasmid construction 11
2.2 Expression and Purification of AP205 VLPs 12
2.3 The AP205 VLPs coat protein (dimers) purification 14
2.3.1 Disassembly of AP205 VLPs 14
2.3.2 The AP205 VLPs coat protein (dimers) purification 14
2.4 In vitro transcription of RNA hairpin 15
2.5 Biochemical modification of the 5’-RNA hairpin 15
2.6 RNA hairpin-antibiotic coupling 16
2.7 In vitro assembly of AP205 VLPs cargo 17
2.8 The transmission electron microscopy images of AP205 VLPs 18
CHAPTER 3: RESULTS 19
3.1 Purification of AP205 VLPs coat protein dimers 19
3.2 In vitro transcription of RNA hairpin 23
3.3 Identification of RNA hairpin-antibiotic coupling 25
3.4 The assembly efficiency of AP205 VLPs in vitro 29
3.5 Characterization and purification of in vitro assembly AP205 VLPs cargo 31
3.6 Cytotoxicity of AP205 VLPs cargo towards cervical cancer cells line 34
CHAPTER 4: DISCUSSION 36
4.1 The RNA hairpin-doxorubicin coupling efficiency test 36
4.2 Non-covalent loading of doxorubicin into AP205 VLPs 38
4.3 An alternative covalent loading of doxorubicin into AP205 VLPs 39
4.4 Summary and future works 41
SUPPLEMENTARY MATERIALS 43
LITERATURE CITATIONS 44
dc.language.isoen
dc.title試管內組裝AP205類病毒顆粒蛋白作為抗生素藥物傳遞平臺zh_TW
dc.titleAn antibiotic delivery platform using in vitro packed AP205 VLPsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東,冀宏源
dc.subject.keywordAP205類病毒顆粒蛋白,類病毒顆粒蛋白,試管內組裝,小分子藥物運送,阿黴素,新黴素,zh_TW
dc.subject.keywordAP205 virus like particles,VLPs,in vitro assembly,small molecular drug delivery,doxorubicin,neomycin,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201901487
dc.rights.note未授權
dc.date.accepted2019-07-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved