Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝仕(Sheng-Shih Wang)
dc.contributor.authorChien-Yu Linen
dc.contributor.author林千鈺zh_TW
dc.date.accessioned2021-06-08T03:38:25Z-
dc.date.copyright2019-07-19
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citation1. Pradhan, N., et al., Sugar-Terminated Nanoparticle Chaperones Are 10(2)-10(5) Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity. ACS Appl Mater Interfaces, 2017. 9(12): p. 10554-10566.
2. ; Available from: https://peptidesguide.com/.
3. Godbey, W.T., Chapter 2 - Proteins, in An Introduction to Biotechnology, W.T. Godbey, Editor. 2014, Woodhead Publishing. p. 9-33.
4. Bhagavan, N.V. and C.-E. Ha, Chapter 4 - Three-Dimensional Structure of Proteins and Disorders of Protein Misfolding, in Essentials of Medical Biochemistry (Second Edition), N.V. Bhagavan and C.-E. Ha, Editors. 2015, Academic Press: San Diego. p. 31-51.
5. Bonds that Stabilize Folded Proteins. New Science Press, 2004.
6. Nick Pace, C., J.M. Scholtz, and G.R. Grimsley, Forces stabilizing proteins. FEBS Letters, 2014. 588(14): p. 2177-2184.
7. Pace, C.N., et al., Forces contributing to the conformational stability of proteins. The FASEB journal, 1996. 10(1): p. 75-83.
8. Chiti, F. and C.M. Dobson, Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry, 2006. 75(1): p. 333-366.
9. Rambaran, R.N. and L.C. Serpell, Amyloid fibrils: abnormal protein assembly. Prion, 2008. 2(3): p. 112-117.
10. Uversky, V.N. and A.L. Fink, Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2004. 1698(2): p. 131-153.
11. Adamcik, J. and R. Mezzenga, Proteins Fibrils from a Polymer Physics Perspective. Macromolecules, 2012. 45(3): p. 1137-1150.
12. Loveday, S.M., et al., Tuning the properties of β-lactoglobulin nanofibrils with pH, NaCl and CaCl2. International Dairy Journal, 2010. 20(9): p. 571-579.
13. Hamada, D., et al., Competition between Folding, Native-State Dimerisation and Amyloid Aggregation in β-Lactoglobulin. Journal of Molecular Biology, 2009. 386(3): p. 878-890.
14. Albani, J.R., et al., Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence. Journal of Pharmaceutical and Biomedical Analysis, 2014. 91: p. 144-150.
15. Dave, A.C., et al., Beta-lactoglobulin self-assembly: structural changes in early stages and disulfide bonding in fibrils. J Agric Food Chem, 2013. 61(32): p. 7817-28.
16. Kroes-Nijboer, A., P. Venema, and E. van der Linden, Fibrillar structures in food. Food & function, 2012. 3(3): p. 221-227.
17. Akkermans, C., et al., Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation. International Dairy Journal, 2008. 18(10-11): p. 1034-1042.
18. Akkermans, C., et al., Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2. Biomacromolecules, 2008. 9(5): p. 1474-1479.
19. Loveday, S.M., et al., β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloids, 2012. 27(1): p. 242-249.
20. Salata, O., Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2004. 2(1): p. 3.
21. De Jong, W.H. and P.J. Borm, Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine, 2008. 3(2): p. 133.
22. Zaman, M., et al., Nanoparticles in relation to peptide and protein aggregation. International journal of nanomedicine, 2014. 9: p. 899-912.
23. Saptarshi, S.R., A. Duschl, and A.L. Lopata, Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 2013. 11(1): p. 26.
24. Xiao, W. and H. Gao, The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm, 2018. 552(1-2): p. 328-339.
25. Corbo, C., et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016. 11(1): p. 81-100.
26. Milani, S., et al., Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS nano, 2012. 6(3): p. 2532-2541.
27. Lynch, I. and K.A. Dawson, Protein-nanoparticle interactions. Nano today, 2008. 3(1-2): p. 40-47.
28. Givens, B.E., E. Wilson, and J. Fiegel, The effect of salts in aqueous media on the formation of the BSA corona on SiO2 nanoparticles. Colloids Surf B Biointerfaces, 2019. 179: p. 374-381.
29. Rahman, M., et al., Nanoparticle and Protein Corona, in Protein-Nanoparticle Interactions: The Bio-Nano Interface. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 21-44.
30. Walkey, C.D. and W.C. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews, 2012. 41(7): p. 2780-2799.
31. Nierenberg, D., A.R. Khaled, and O. Flores, Formation of a protein corona influences the biological identity of nanomaterials. Rep Pract Oncol Radiother, 2018. 23(4): p. 300-308.
32. Shang, L., et al., pH-Dependent Protein Conformational Changes in Albumin:Gold Nanoparticle Bioconjugates:  A Spectroscopic Study. Langmuir, 2007. 23(5): p. 2714-2721.
33. Yokoyama, K., et al., Microscopic investigation of reversible nanoscale surface size dependent protein conjugation. International journal of molecular sciences, 2009. 10(5): p. 2348-2366.
34. Mahmoudi, M., et al., Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 2011. 3(3): p. 1127-1138.
35. Zeinabad, H.A., et al., Thermodynamic and conformational changes of protein toward interaction with nanoparticles: a spectroscopic overview. RSC Advances, 2016. 6(107): p. 105903-105919.
36. Basu, A., et al., Biopolymer nanoparticle surface chemistry dictates the nature and extent of protein hard corona. Journal of Molecular Liquids, 2019. 282: p. 169-176.
37. Hosseinali, S.H., et al., Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells. Int J Biol Macromol, 2019. 125: p. 778-784.
38. Fei, L. and S. Perrett, Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci, 2009. 10(2): p. 646-55.
39. Rocha, S., et al., Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophysical chemistry, 2008. 137(1): p. 35-42.
40. Cabaleiro-Lago, C., et al., Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society, 2008. 130(46): p. 15437-15443.
41. Bellova, A., et al., Effect of Fe(3)O(4) magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 2010. 21(6): p. 065103.
42. Wu, W.H., et al., TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Commun, 2008. 373(2): p. 315-8.
43. Yoo, S.I., et al., Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew Chem Int Ed Engl, 2011. 50(22): p. 5110-5.
44. Yadav, K.K., et al., Preferential binding to zinc oxide nanoparticle interface inhibits lysozyme fibrillation and cytotoxicity. International Journal of Biological Macromolecules, 2018. 116: p. 955-965.
45. Gao, N., et al., Gold‐Nanoparticle‐Based Multifunctional Amyloid‐β Inhibitor against Alzheimer’s Disease. Chemistry - A European Journal, 2015. 21(2): p. 829-835.
46. Srivatsan, K.V., et al., Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications. International Journal of Biological Macromolecules, 2015. 75: p. 306-315.
47. Sen, S., et al., Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Advances, 2016. 6(49): p. 43104-43115.
48. Bag, S., et al., Inhibition of Human Serum Albumin Fibrillation by Two-Dimensional Nanoparticles. The Journal of Physical Chemistry B, 2017. 121(22): p. 5474-5482.
49. Sardar, S., et al., Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles. International Journal of Biological Macromolecules, 2014. 69: p. 137-145.
50. Dubey, K., et al., Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids, 2015. 47(12): p. 2551-2560.
51. Sen, S., et al., Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin. J Phys Chem B, 2014. 118(40): p. 11667-76.
52. Siposova, K., et al., The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation. Journal of Magnetism and Magnetic Materials, 2017. 427: p. 48-53.
53. Arakawa, T., et al., Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2006. 1764(11): p. 1677-1687.
54. Choudhary, S., et al., Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations. PLoS One, 2016. 11(11): p. e0166487.
55. Yancey, P.H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol, 2005. 208(Pt 15): p. 2819-30.
56. Singh, L.R. and T.A. Dar, Cellular Osmolytes: From Chaperoning Protein Folding to Clinical Perspectives. 2017: Springer.
57. Jain, N.K. and I. Roy, Effect of trehalose on protein structure. Protein Science, 2009. 18(1): p. 24-36.
58. Marasini, C., V. Foderà, and B. Vestergaard, Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology. RSC Advances, 2017. 7(17): p. 10487-10493.
59. Yancey, P., et al., Living with water stress: evolution of osmolyte systems. Science, 1982. 217(4566): p. 1214-1222.
60. Singh, L.R., et al., Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sciences, 2011. 88(3): p. 117-125.
61. Bolen, D.W. and I.V. Baskakov, The osmophobic effect: natural selection of a thermodynamic force in protein folding11Edited by D. Draper. Journal of Molecular Biology, 2001. 310(5): p. 955-963.
62. Singh, L.R., et al., Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2009. 1794(6): p. 929-935.
63. Natalello, A., et al., The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins: Structure, Function, and Bioinformatics, 2009. 75(2): p. 509-517.
64. Scaramozzino, F., et al., TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau. Biochemistry, 2006. 45(11): p. 3684-3691.
65. Borwankar, T., et al., Natural Osmolytes Remodel the Aggregation Pathway of Mutant Huntingtin Exon 1. Biochemistry, 2011. 50(12): p. 2048-2060.
66. Garcia-Garcia, E., et al., Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? International journal of pharmaceutics, 2005. 298(2): p. 274-292.
67. Naito, A.T., Material for passage through the blood-brain barrier. 2001, Google Patents.
68. Choudhary, S., N. Kishore, and R.V. Hosur, Inhibition of insulin fibrillation by osmolytes: Mechanistic insights. Sci Rep, 2015. 5: p. 17599.
69. Bomhoff, G., et al., The effects of the flavonoid baicalein and osmolytes on the Mg 2+ accelerated aggregation/fibrillation of carboxymethylated bovine 1SS-α-lactalbumin. Archives of Biochemistry and Biophysics, 2006. 453(1): p. 75-86.
70. Nayak, A., et al., Osmolyte controlled fibrillation kinetics of insulin: New insight into fibrillation using the preferential exclusion principle. Biotechnology progress, 2009. 25(5): p. 1508-1514.
71. Abe, M., et al., Mechanism for retardation of amyloid fibril formation by sugars in Vλ6 protein. Protein Science, 2013. 22(4): p. 467-474.
72. Seeliger, J., et al., Cosolvent effects on the fibrillation reaction of human IAPP. Physical Chemistry Chemical Physics, 2013. 15(23): p. 8902-8907.
73. Estrela, N., et al., Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins: Structure, Function, and Bioinformatics, 2015. 83(11): p. 2039-2051.
74. Kuznetsova, N., S. Chi, and S. Leikin, Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry, 1998. 37(34): p. 11888-11895.
75. Pandey, N.K., S. Ghosh, and S. Dasgupta, Fructose restrains fibrillogenesis in human serum albumin. Int J Biol Macromol, 2013. 61: p. 424-32.
76. Wei, Y., et al., Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC cell biology, 2009. 10: p. 10-10.
77. Fung, J., A.A. Darabie, and J. McLaurin, Contribution of simple saccharides to the stabilization of amyloid structure. Biochemical and biophysical research communications, 2005. 328(4): p. 1067-1072.
78. Arora, A., C. Ha, and C.B. Park, Inhibition of insulin amyloid formation by small stress molecules. FEBS letters, 2004. 564(1-2): p. 121-125.
79. Qi, W., et al., Two Disaccharides and Trimethylamine N-Oxide Affect Aβ Aggregation Differently, but All Attenuate Oligomer-Induced Membrane Permeability. Biochemistry, 2009. 48(37): p. 8908-8919.
80. Dai, X., et al., Chitosan Oligosaccharides Inhibit/Disaggregate Fibrils and Attenuate Amyloid β-Mediated Neurotoxicity. International journal of molecular sciences, 2015. 16(5): p. 10526-10536.
81. Ignatova, Z. and L.M. Gierasch, Inhibition of protein aggregation <em>in vitro</em> and <em>in vivo</em> by a natural osmoprotectant. Proceedings of the National Academy of Sciences, 2006. 103(36): p. 13357.
82. Da Silva Pinto, M., et al., Glucose Slows Down the Heat-Induced Aggregation of β-Lactoglobulin at Neutral pH. Journal of Agricultural and Food Chemistry, 2012. 60(1): p. 214-219.
83. Zhao, D., et al., Heat-induced amyloid-like aggregation of β-lactoglobulin regulated by glycation: A comparison of five kinds of reducing saccharides. International Journal of Biological Macromolecules, 2018. 120: p. 302-309.
84. Jones, O.G., et al., Fibrillation of beta-lactoglobulin at low pH in the presence of a complexing anionic polysaccharide. Langmuir, 2010. 26(22): p. 17449-58.
85. Macchi, F., et al., The effect of osmolytes on protein fibrillation. Int J Mol Sci, 2012. 13(3): p. 3801-19.
86. Ueda, T., M. Nagata, and T. Imoto, Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose. The Journal of Biochemistry, 2001. 130(4): p. 491-496.
87. Samuel, D., et al., Proline inhibits aggregation during protein refolding. Protein Science, 2000. 9(2): p. 344-352.
88. Yang, D.-S., et al., Manipulating the amyloid-β aggregation pathway with chemical chaperones. Journal of Biological Chemistry, 1999. 274(46): p. 32970-32974.
89. Kim, H.Y., et al., Regulation of in vitro Aβ 1-40 Aggregation Mediated by Small Molecules. Journal of Alzheimer's Disease, 2010. 22(1): p. 73-85.
90. Kanapathipillai, M., et al., Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's β‐amyloid. FEBS letters, 2005. 579(21): p. 4775-4780.
91. Dong, X.-Y., et al., Self-interaction of native and denatured lysozyme in the presence of osmolytes, l-arginine and guanidine hydrochloride. Biochemical Engineering Journal, 2009. 43(3): p. 321-326.
92. Santoro, M.M., et al., Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 1992. 31(23): p. 5278-5283.
93. Miura, Y., C. You, and R. Ohnishi, Inhibition of Alzheimer amyloid β aggregation by polyvalent trehalose. Science and Technology of Advanced Materials, 2008. 9(2): p. 024407.
94. Pradhan, N., et al., Antiamyloidogenic Chemical/Biochemical-Based Designed Nanoparticle as Artificial Chaperone for Efficient Inhibition of Protein Aggregation. Biomacromolecules, 2018. 19(6): p. 1721-1731.
95. Fukuda, T., et al., Aggregation of Alzheimer amyloid β peptide (1− 42) on the multivalent sulfonated sugar interface. Bioconjugate chemistry, 2010. 21(6): p. 1079-1086.
96. Miura, Y., et al., Inhibition of Alzheimer Amyloid Aggregation with Sulfated Glycopolymers. Biomacromolecules, 2007. 8(7): p. 2129-2134.
97. Palmal, S., N.R. Jana, and N.R. Jana, Inhibition of Amyloid Fibril Growth by Nanoparticle Coated with Histidine-Based Polymer. The Journal of Physical Chemistry C, 2014. 118(37): p. 21630-21638.
98. Pradhan, N., N.R. Jana, and N.R. Jana, Inhibition of Protein Aggregation by Iron Oxide Nanoparticles Conjugated with Glutamine- and Proline-Based Osmolytes. ACS Applied Nano Materials, 2018. 1(3): p. 1094-1103.
99. Mandal, S., et al., Trehalose-Functionalized Gold Nanoparticle for Inhibiting Intracellular Protein Aggregation. Langmuir, 2017. 33(49): p. 13996-14003.
100. Xiong, N., et al., Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS applied materials & interfaces, 2015. 7(10): p. 5650-5662.
101. Rajaram, H., et al., ‘Click’ assembly of glycoclusters and discovery of a trehalose analogue that retards Aβ40 aggregation and inhibits Aβ40-induced neurotoxicity. Bioorganic & Medicinal Chemistry Letters, 2014. 24(18): p. 4523-4528.
102. Fukuda, T., E. Matsumoto, and Y. Miura, Interaction between multimeric sulfated saccharides and Alzheimer amyloid β (1-42). Chemistry Letters, 2015. 44(11): p. 1482-1484.
103. Lakowicz, J.R., Principles of fluorescence spectroscopy. 2013: Springer Science & Business Media.
104. Ghisaidoobe, A.B.T. and S.J. Chung, Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. International Journal of Molecular Sciences, 2014. 15(12): p. 22518-22538.
105. van de Weert, M. and L. Stella, Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of Molecular Structure, 2011. 998(1): p. 144-150.
106. Gebbink, M.F.B.G., et al., Amyloids — a functional coat for microorganisms. Nature Reviews Microbiology, 2005. 3: p. 333.
107. Hawe, A., M. Sutter, and W. Jiskoot, Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res, 2008. 25(7): p. 1487-99.
108. Stsiapura, V.I., et al., Computational Study of Thioflavin T Torsional Relaxation in the Excited State. The Journal of Physical Chemistry A, 2007. 111(22): p. 4829-4835.
109. Krebs, M.R., E.H. Bromley, and A.M. Donald, The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol, 2005. 149(1): p. 30-7.
110. Biancalana, M. and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta, 2010. 1804(7): p. 1405-12.
111. Lee, C., 1-Anilinonaphthalene-8-sulfonate (ANS); a versatile fluorescent probe from protein folding study to drug design. BioWave, 2010. 12(6): p. 1.
112. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 2006. 1(6): p. 2876-2890.
113. Greenfield, N.J. and G.D. Fasman, Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 1969. 8(10): p. 4108-4116.
114. Chandel, K.K. and S. Pahadiya, Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis. 2005.
115. Katoch, R., Carbohydrate Estimations, in Analytical Techniques in Biochemistry and Molecular Biology. 2011, Springer New York: New York, NY. p. 67-76.
116. Goodarzi, A., et al., Aqueous Ferrofluid of Citric Acid Coated Magnetite Particles. MRS Proceedings, 2003. 789: p. N6.6.
117. Stetefeld, J., S.A. McKenna, and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 2016. 8(4): p. 409-427.
118. Kumar, S., Spectroscopy of organic compounds. Cosmic rays, 2006. 10: p. 4.
119. Zaman, M., et al., Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine, 2014. 9: p. 899-912.
120. Lee, C.C., et al., A three-stage kinetic model of amyloid fibrillation. Biophys J, 2007. 92(10): p. 3448-58.
121. Bolisetty, S., et al., Gelation, Phase Behavior, and Dynamics of β-Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths. Biomacromolecules, 2012. 13(10): p. 3241-3252.
122. Kim, Y.-S., et al., Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Science, 2003. 12(6): p. 1252-1261.
123. Dufour, E., C. Genot, and T. Haertlé, β-lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1994. 1205(1): p. 105-112.
124. Rasoulzadeh, F., et al., Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(1): p. 190-193.
125. Leavis, P.C., E. Gowell, and T. Tao, Fluorescence lifetime and acrylamide quenching studies of the interactions between troponin subunits. Biochemistry, 1984. 23(18): p. 4156-4161.
126. Screen, J., et al., IR-spectral signatures of aromatic-sugar complexes: probing carbohydrate-protein interactions. Angew Chem Int Ed Engl, 2007. 46(20): p. 3644-8.
127. Foderà, V., et al., Self-Organization Pathways and Spatial Heterogeneity in Insulin Amyloid Fibril Formation. The Journal of Physical Chemistry B, 2009. 113(31): p. 10830-10837.
128. Koistinen, H., et al., Glycodelin and β-lactoglobulin, lipocalins with a high structural similarity, differ in ligand binding properties. FEBS Letters, 1999. 450(1): p. 158-162.
129. Van de Weert, M. and L. Stella, Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. Journal of Molecular Structure, 2011. 998(1-3): p. 144-150.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21574-
dc.description.abstract目前有許多疾病與蛋白質/肽錯誤折疊所形成之類澱粉纖維聚集有關,例如:阿茲海默症、帕金森氏症及亨廷頓氏症等。然而,許多文獻指出於蛋白質溶液中添加小分子或是奈米粒子將有助於修復蛋白質之錯誤折疊,甚至抑制纖維狀聚集成核以及成長。本研究使用β-乳球蛋白作為研究目標並於高溫且酸性條件之下培養成類澱粉纖維,雖然此類蛋白質本身並非為致病蛋白質,但透過實驗了解其所形成類澱粉纖維之行為以及特性,仍可對於抑制劑如何影響蛋白質纖維化之機制有更深入的了解,也可以應用於設計其他分子抑制劑。然而,抑制劑之選擇分別為蔗糖及果糖所形成之糖奈米粒子(sugar terminated nanoparticle)。
本研究結果顯示,無論是蔗糖或是果糖奈米粒子皆能明顯地降低及延緩β-乳球蛋白形成類澱粉纖維之程度。另外,亦發現於此滲透物奈米粒子之存在下,能有效地穩定β-乳球蛋白之二級結構;且蔗糖分子與果糖分子之對照組別卻不具此性質,甚至造成β-乳球蛋白結構損失更為嚴重。而欲了解所使用之糖奈米粒子影響此蛋白質三級結構之變化,則以ANS螢光分析方法檢測,結果發現此兩種糖類抑制劑可有效地降低β-乳球蛋白疏水區域裸露開展之程度。亦以散射實驗和電泳檢測所形成之聚集物之大小,發現添加高濃度糖奈米粒子能有效地降低蛋白質聚集程度。
除此,於本研究中試圖以螢光淬滅法分析其之間所形成之交互作用力,並試圖了解於不同溫度之下抑制劑與蛋白質之間的結合常數等參數。於實驗結果發現糖類抑制劑與蛋白質混合後將導致整個系統處於放熱狀態,進而推測氫鍵於蛋白質和奈米粒子之間的交互作用中具有具有相當重要之影響,且果糖奈米粒子組別於三種溫度下之結合常數皆比另一系統來得高,推測果糖奈米粒子與β-乳球蛋白之間的相互作用是較有利的,或β-乳球蛋白對果糖奈米粒子具有較高的親和力。
本實驗所合成之蔗糖及果糖奈米粒子其作為抑制劑之效果皆遠大於其為分子狀態時來得有效,顯示此糖奈米粒子之結構能提供多價鍵結,進而減少β-乳球蛋白類澱粉纖維之形成。我們期望此研究結果能有助於開發一具潛力之抑制劑以針對類澱粉纖維相關疾病。
zh_TW
dc.description.abstractCurrently, accumulation of proteins/peptides has been found to be associated with many diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been shown that the addition of small molecules or nanoparticles can interfere with amyloid fibril formation. In this study, β-lactoglobulin (β-LG) was used to form amyloid fibrils under high temperature and acidic conditions. Although the protein itself is not pathogenic, understanding the behavior and characteristics of its amyloid aggregation form could provide a better understanding of how inhibitors affect protein fibrillogenesis. Moreover, the knowledge gained here could also aid in designing new inhibitory molecules. Herein, the sugar (sucrose or fructose)-terminated nanoparticles were used as the protein aggregation inhibitors. Our results showed that both sucrose and fructose nanoparticles could significantly retard and/or decrease β-LG fibrillation. In addition, results showed that the secondary structure of β-LG was stabilized in the presence of the sugar-based nanoparticles under 80˚C and pH 2.0 conditions. However, this secondary structural stabilization behavior was not observed when the two sugars in their molecular form were added. Using ANS binding assay, we found that the sugar-terminated nanoparticles effectively reduced the degree of exposure of the β-LG hydrophobic area. Furthermore, as revealed by light scattering experiment and electrophoresis, the size of aggregates was observed to significantly decrease as the sugar nanoparticles at higher concentrations were added.
We also went ahead to analyze the interaction/binding between sugar nanoparticles and β-LG by fluorescence quenching experiments at different temperatures. Several points could be made from the fluorescence quenching results: (1) The reaction between proteins and sugar terminated nanoparticles was determined to be exothermic. (2) Hydrogen bonding may play an important role in the interaction between protein and nanoparticles. (3) The binding constants of the fructose nanoparticle group at three temperatures were all considerably higher than those of the sucrose nanoparticle system, implying that the interaction between fructose nanoparticles and β-LG was favorable or β-LG has a high affinity for fructose nanoparticles.
As revealed by several spectroscopic tools and biophysical methods, the sucrose and fructose-terminated nanoparticles synthesized in this study were found to be more effective in inhibiting β-LG fibril formation, as compared to their molecular form., This result suggested that the sugar nanoparticle structure could provide multivalent bonds, thereby reducing the formation of β-LG amyloid fibrils. While more research is warranted to decipher the underlying mechanism of action of sugar-based nanoparticles against protein fibril formation, we believe the outcome from this work may aid in the development of potential inhibitory agents against the diseases associated with amyloid fibrillogenesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:38:25Z (GMT). No. of bitstreams: 1
ntu-108-R06524015-1.pdf: 13665839 bytes, checksum: 28630c4f88f25f6a691f25fe871aea2f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1研究動機 1
第二章 文獻回顧 3
2-1蛋白質簡介 3
2-1-1胺基酸 3
2-1-2蛋白質結構 4
2-1-3蛋白質結構間之作用力 6
2-2類澱粉纖維 6
2-3 β-乳球蛋白β-Lactoglobulin (beta-LG) 8
2-3-1 β-乳球蛋白所形成之類澱粉纖維 10
2-4奈米粒子簡介 11
2-4-1奈米粒子與蛋白質所形成之冠冕 12
2-4-2奈米粒子對於蛋白質結構之影響 14
2-4-3奈米粒子對於蛋白質纖維化之影響 16
2-5滲透物Osmolyte簡介 23
2-5-1滲透物質之種類 23
2-5-2滲透物於生物分子之相容性與穩定性 27
2-5-3滲透物與蛋白質相互作用 28
2-5-4滲透物質作為蛋白質之化學分子伴侶(Chemical Chaperones) 30
2-5-5滲透物對於蛋白質形成類澱粉纖維之影響 32
2-5-6滲透物所形成聚合物影響類澱粉纖維之生成 42
2-6實驗檢測原理介紹 50
m2-6-1自身螢光光譜 50
2-6-2螢光淬滅 51
2-6-3 Thioflavin T螢光光譜 52
2-6-4 ANS螢光光譜 54
2-6-5圓二色(Circular Dichroism)光譜 55
2-6-6 SDS-PAGE蛋白質電泳 56
2-6-7蒽酮試劑檢測(Anthrone Test) 57
第三章 實驗儀器、藥品與實驗步驟 58
3-1實驗裝置 58
3-2實驗藥品 59
3-3實驗方法及步驟 60
3-3-1糖奈米粒子製備(sugar-terminated nanoparticle) 60
3-3-2糖奈米粒子定性之檢測 61
3-3-3糖奈米粒子表面糖基濃度之檢測 64
3-3-4糖奈米粒子穩定性實驗 64
3-3-5主要溶液配製 65
3-3-6蛋白質濃度之定量 65
3-3-7蛋白質樣品製備及相關檢測 66
第四章 實驗結果與討論 72
4-1 蔗糖與果糖奈米粒子之性質鑑定 72
4-1-1 粒徑大小及形貌 72
4-1-2 蔗糖與果糖奈米粒子之FTIR分析結果 74
4-1-3 蔗糖與果糖奈米粒子之吸收及放射圖譜 76
4-1-4 糖奈米粒子表面糖濃度之檢測 77
4-1-5 糖奈米粒子熱穩定性檢測 80
4-2 糖奈米粒子於抑制β-LG纖維化之結果 83
4-2-1 Thioflavin T fluorescence spectroscopy (ThT assay) 83
4-2-2 圓二色光譜 (CD spectroscopy) 89
4-2-3穿透式電子顯微鏡 (Transmission Electron Microscopy) 93
4-3 糖奈米粒子對beta-LG之三級結構影響: 98
4-3-1 ANS螢光光譜 98
4-3-2 自身螢光光譜 (Intrinsic Fluorescence Spectroscopy) 104
4-3-3 螢光淬滅 (Fluorescence Quenching) 107
4-4 糖奈米粒子於beta-LG聚集體大小之影響 116
4-4-1 Right-angle Light Scattering 116
4-4-2 SDS-PAGE蛋白質電泳方法 118
第五章 結論與未來展望 120
附錄 124
附錄A 探討蔗糖及果糖奈米粒子與ThT以及ANS染劑之作用 124
附錄B 檢測蔗糖及果糖分子之吸收光譜及螢光放射光譜圖 126
附錄C 蔗糖及果糖奈米粒子之THT全光譜圖 127
附錄D 蔗糖及果糖奈米粒子溶液上層液之DLS圖 128
參考文獻 129
圖目錄
圖2-1-1-1胺基酸所形成之胜肽鍵之示意圖 3
圖2-1-2-1胜肽鍵形成部分雙鍵之示意圖 4
圖2-1-2-1蛋白質一級至四級結構之示意圖 5
圖2-1-3-1蛋白質所形成之疏水作用及氫鍵之表示圖 6
圖2-2-1原態球狀蛋白質形成類澱粉纖維之機制示意圖 7
圖2-3-1 β-乳球蛋白之單體於原態狀態之結構 9
圖2-3-1-1 β -乳球蛋白自組裝的簡化機制圖 11
圖2-4-1奈米粒子於各領域之應用 12
圖2-4-1-1蛋白質吸附於奈米粒子所形成冠冕之示意圖 14
圖2-4-2-1奈米粒子對於影響蛋白質構型之影響示意圖 15
圖2-5-1-1主要有機滲透物質之例子 25
圖2-5-1-1果糖無環與環狀異構物之關係示意圖 26
圖2-5-1-2蔗糖化學結構示意圖 26
圖2-5-3-1 Preferential interaction之示意圖 29
圖2-5-3-2以海藻糖為例,不同理論影響蛋白質結構之示意圖 30
圖2-5-6-1抗類澱粉纖維之分子所形成奈米粒子形式 43
圖2-6-3-1 Thioflavin T分子結構圖 53
圖2-6-3-2 Thioflavin T分子與類澱粉纖維結合之示意圖 53
圖2-6-4-1 ANS分子染劑之結構圖 54
圖2-6-5-1蛋白質二級結構之圓二色光譜圖 55
圖2-6-7-1以D-Glucose進行蒽酮檢驗之反應示意圖 57
圖3-3-1-1糖奈米粒子製備過程之示意圖 61
圖3-3-2-2-1糖奈米粒子於FTIR檢測過程之照片 63
圖4-1-1-1穿透式電子顯微鏡(TEM)拍攝(A)蔗糖(B)果糖奈米材料圖 73
圖4-1-1-2蔗糖與果糖奈米粒子之粒徑分析圖 74
圖4-1-2-1蔗糖奈米粒子與蔗糖分子之FTIR光譜圖 75
圖4-1-2-2果糖奈米粒子與果糖分子之FTIR光譜圖 76
圖4-1-3-1蔗糖及果糖奈米粒子於UV-vis吸收、螢光放射光譜之全波長圖 77
圖4-1-4-1 糖奈米粒子溶液與蒽酮試劑反應前後之示意圖 77
圖4-1-4-2蔗糖標準品與蒽酮試劑反應於630nm下之吸收值對蔗糖濃度作圖 78
圖4-1-4-3果糖標準品與蒽酮試劑反應於630nm下之吸收值對果糖濃度作圖 79
圖4-1-5-1蔗糖標準品與蒽酮試劑反應於630nm下之吸收值對蔗糖濃度作圖 81
圖4-1-5-2果糖標準品與蒽酮試劑反應於630nm下之吸收值對果糖濃度作圖 82
圖4-2-1-1蔗糖奈米粒子對β-乳球蛋白纖維形成影響之ThT螢光光譜圖 86
圖4-2-1-2果糖奈米粒子對β-乳球蛋白纖維形成影響之ThT螢光光譜圖 87
圖4-2-1-3蔗糖奈米粒子對β-乳球蛋白纖維形成影響之ThT螢光光譜圖 87
圖4-2-1-4果糖奈米粒子對β-乳球蛋白纖維形成影響之ThT螢光光譜圖 88
圖4-2-1-5添加最高比例(1:1)濃度之蔗糖/果糖奈米粒子於以已培養兩天之β-乳球蛋白纖維溶液之ThT螢光光譜圖 89
圖4-2-2-1 β-乳球蛋白與蔗糖奈米粒子組別於兩天培養前後之CD光譜圖 88
圖4-2-2-2 β-乳球蛋白與果糖奈米粒子組別於培養兩天前後之CD光譜圖 91
圖4-2-3-1 β-乳球蛋白於80oC培養兩天後兩天後之TEM圖 95
圖4-2-3-2 β-乳球蛋白與添加重量比1:0.1之SNPs組別之TEM圖 95
圖4-2-3-3 β-乳球蛋白與添加重量比1:1之SNPs組別之TEM圖 96
圖4-2-3-4 β-乳球蛋白與添加重量比1:1之蔗糖(SN)組別之TEM圖 96
圖4-2-3-5 β-乳球蛋白與添加重量比1:0.1之FNPs組別之TEM圖 97
圖4-2-3-6 β-乳球蛋白與添加重量比1: 1之FNPs組別之TEM圖 97
圖4-2-3-7 β-乳球蛋白與添加重量比1: 1之果糖(FN)組別之TEM圖 98
圖4-3-1-1蔗糖/果糖奈米粒子對β-乳球蛋白之ANS螢光放射光譜圖 101
圖4-3-1-2蔗糖奈米粒子對β-乳球蛋白疏水區域裸露之影響圖 102
圖4-3-1-3果糖奈米粒子對β-乳球蛋白疏水區域裸露之影響圖 102
圖4-3-1-4添加不同比例蔗糖/果糖奈米粒子於已存在β-乳球蛋白纖維溶液中之ANS螢光光譜圖 103
圖4-3-2-1以Stern-Volmer equation回歸SNPs與FNPs添加不同濃度所造成β-乳球蛋白螢光淬滅之程度 106
圖4-3-3-1 25˚C下,β-乳球蛋白於不同添加濃度SNPs之螢光淬滅光譜圖 110
圖4-3-3-2 55˚C下,β-乳球蛋白於不同添加濃度SNPs之螢光淬滅光譜圖 110
圖4-3-3-3 80˚C下,β-乳球蛋白於不同添加濃度SNPs之螢光淬滅光譜圖 111
圖4-3-3-4 SNPs組別於不同溫度下所得之自由能對溫度作圖 112
圖4-3-3-5 25˚C下,β-乳球蛋白於不同添加濃度FNPs之螢光淬滅光譜圖 113
圖4-3-3-6 55˚C下,β-乳球蛋白於不同添加濃度FNP之螢光淬滅光譜圖 113
圖4-3-3-7 80˚C下,β-乳球蛋白於不同添加濃度FNP之螢光淬滅光譜圖 114
圖4-3-3-8 FNPs組別於不同溫度下所得之自由能對溫度作圖 115
圖4-4-1-1於80oC培養兩天之下,添加不同濃度的SNPs與FNPs、高濃度蔗糖與果糖於β-乳球蛋白溶液中所造成之光散射之變化百分比圖 117
圖4-4-2-1 β-乳球蛋白與添加不同糖奈米粒子比例之電泳圖 119
圖5-1糖奈米粒子於抑制β-乳球蛋白纖維化之圖摘要總結 123
圖A-1 僅蔗糖/果糖之奈米粒子、分子糖與ThT染劑於420nm波段下激發所得之強度 124
圖A-2 僅蔗糖/果糖之奈米粒子、分子糖與ANS染劑於380nm波段下激發所得之強度 125
圖B-1蔗糖及果糖分子於UV-vis吸收光譜、螢光放射光譜之全波長圖 125
圖C-1蔗糖及果糖奈米粒子於不同濃度下THT全光譜圖 126
圖D-1蔗糖奈米粒子溶液之上層液之DLS圖 127
圖D-2果糖奈米粒子溶液之上層液之DLS圖 127
表目錄
表2-2-1常見之蛋白質所形成之類澱粉纖維症 8
表2-4-1-1影響冠冕形成之參數及現象 14
表2-4-3-1奈米粒子對於蛋白質纖維化影響之統整 18
表2-5-1-1主要滲透物質之分類 24
表2-5-2-1滲透物質保護性質之總結 27
表2-5-5-1各種滲透物質影響蛋白質形成類澱粉纖維之統整 33
表2-5-5-2各種滲透物質抑制蛋白質形成類澱粉纖維之統整 40
表2-5-6-1各種滲透物質所形成之聚合物於影響類澱粉纖維之統整 44
表2-6-1-1蛋白質三個發光胺基酸吸收及及螢光放射光譜之特徵參數 50
表2-6-2-1熱力學參數與交互作用力之間的關係 52
表2-6-7-1 檢驗碳水化合物之方法統整 57
表3-1實驗儀器與廠牌 58
表3-2藥品名稱、供應商與藥品編號 59
表3-3-2-1-1 動態光散射測定儀參數設定 62
表3-3-6-1 定量蛋白質所需之參數 65
表3-3-7-2-1 ThT螢光光譜分析儀器參數設定 66
表3-3-7-3-1 ANS螢光光譜分析儀器參數設定 67
表3-3-7-4-1自身螢光光譜分析之參數設定 68
表3-3-7-5-1 圓二色光譜分析之參數設定 69
表3-3-7-6-1光散射實驗參數設定 69
表4-1-4-1 蔗糖奈米粒子於稀釋不同倍率所得之吸收值及所回推之濃度 78
表4-1-4-2 果糖奈米粒子於稀釋不同倍率所得之吸收值及所回推之濃度 79
表4-1-5-1蔗糖奈米粒子 81
表4-1-5-2果糖奈米粒子 82
表4-2-2-1於培養前後,添加高比例之糖奈米粒子與分子糖之β-乳球蛋白溶液,其二級結構分佈表 93
表4-3-1-1各組別其重心波長於培養前後之變化 102
表4-3-2-1 SNPs組別以Stern-Volmer equation回歸之參數統整結果 106
表4-3-2-2 FNPs組別以Stern-Volmer equation回歸之參數統整結果 107
表4-3-3-1 SNPs組別於不同操作溫度下以Hill equation回歸之參數結果 111
表4-3-3-2 FNPs組別於不同操作溫度下以Hill equation回歸之參數結果 114
表4-3-3-3 β-乳球蛋白分別與蔗糖/果糖奈米粒子結合之熱力學參數 115
dc.language.isozh-TW
dc.title探討糖奈米粒子於抑制β-乳球蛋白類澱粉纖維形成之影響zh_TW
dc.titleExamining the Effects of Sugar-Terminated Nanoparticles on Amyloid Fibril Formation of β-Lactoglobulinen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林達顯,吳宛儒,賴進此,侯劭毅
dc.subject.keyword類澱粉纖維症,滲透物,奈米粒子,抑制劑,糖類,β-乳球蛋白,聚集,zh_TW
dc.subject.keywordamyloidosis,osmolyte,nanoparticle,inhibitor,sugar,β-lactoglobulin,aggregation,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201901481
dc.rights.note未授權
dc.date.accepted2019-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
13.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved