Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21561
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李致毅 | |
dc.contributor.author | Guan-Wei Wu | en |
dc.contributor.author | 吳冠緯 | zh_TW |
dc.date.accessioned | 2021-06-08T03:37:58Z | - |
dc.date.copyright | 2019-07-24 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-18 | |
dc.identifier.citation | [1] Universal Serial Bus [Online]. Available: http://www.usb.org/
[2] Serial ATA [Online]. Available: http://www.sata-io.org/ [3] PCI-SIG [Online]. Available: http://ww.pcisig.com/ [4] IEEE 802.3 [Online]. Available: http://www.ieee802.org/3/ [5] P.-C. Chiang et al. “4× 25 Gb/s Transceiver With Optical Front-end For 100 GbE System in 65 nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 573–585, 2015. [6] B. Zhang et al. “A 28 Gb/s Multistandard Serial Link Transceiver for Backplane Applications in 28 nm CMOS ,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3089-3100, Dec. 2015. [7] J. Im et al. “A 40-to-56 Gb/s PAM-4 receiver with ten-tap direct decision-feedback equalization in 16-nm FinFET,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3486–3502, Dec. 2017. [8] P. J. Peng et al., “A 56Gb/s PAM-4/NRZ transceiver in 40nm CMOS,” IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2017, pp. 110–111. [9] B. Razavi, “Design of Integrated Circuits for Optical Communications 2nd edition,” NewYork: McGraw-Hill, 2012. [10] Y.M. Ying and S.I. Liu, “A 20Gb/s digitally adaptive equalizer/DFE with blind sampling”, IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 444– 445. [11] Shunbin Li et al. “An Adaptive PAM-4 Analog Equalizer With Boosting-State Detection in the Time Domain”, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 10, OCTOBER 2017. [12] E. Mammei et al., “Analysis and design of a power-scalable continuoustime FIR equalizer for 10 Gb/s to 25 Gb/s Multi-Mode Fiber EDC in 28 nm LP CMOS,” Solid-State Circuits, IEEE Journal of, vol. 49, no. 12, pp. 3130–3140, Dec 2014. [13] P. Duy-Dong, et al., 'Current diversion technique for the design of broadband variable gain amplifiers,' in Communication Systems (ICCS), 2010 IEEE International Conference on, 2010, pp. 23-26. [14] H. Wang, C. Lee, A. Lee, and J. Lee, “A 21-Gb/s 87-mW transceiver with FFE/DFE/linear equalizer in 65 nm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, 2009, pp. 50–51. [15] A. Gersho, “Adaptive Filtering with Binary Reinforcement,”IEEE Trans. On Info. Thy., IT-30, pp.191-199, March 1984. [16] J. Lee and K.-C. Wu, “A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3590–3602, Dec. 2009. [17] J. Lee, K. S. Kundert, and B. Razavi, “Analysis and Modeling of Bang-Bang Clock and Data Recovery Circuits,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1571–1580, Sep. 2004. [18] Sonntag, L. Jeff, and Stonick, J.: ‘A digital clock and data recovery architecture for multi-gigabit/s binary links’, J. Solid-State Circuits, 2006, 41, pp. 1867–1875 [19] Rainer Kreienkamp et al. “A 10-Gb/s CMOS Clock and Data Recovery Circuit with an Analog Phase Interpolator,” IEEE Custom Integrated Circuits Conference (CICC), pp. 73-76, Sept. 2003 [20] Jee, D. et al. “A FIR-embedded phase interpolator based noise filtering for wide-bandwidth fractional-N PLL”, J. Solid-State Circuits, 2013, 48, (11), pp. 2795–2804, doi: 10.1109/JSSCC.2013.2282620 [21] D. Dalton et al. “A 12.5 Mb/s to 2.7 Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 230–231, 595. [22] G. Shu, et al., “A 4-to-10.5 Gb/s continuous-rate digital clock and data recovery with automatic frequency acquisition,” IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 428-439, Feb. 2016. [23] M. Talegaonkar et al., 'Digital Clock and Data Recovery Circuit Design: Challenges and Tradeoffs,' IEEE Custom Integrated Circuits Conference, Sept. 2011. [24] I.-F. Chen et al. “Loop latency reduction technique for all-digital clock and data recovery circuits,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 309–312. [25] CHAN M. et al. “A bang–bang PLL employing dynamic gain control for low jitter and fast lock times”, Analog Integr. Circuits Signal Process., 2006, 49, pp. 131–140. [26] A. Samarah and A. C. Carusone. “Cycle-slipping pull-in range of bang-bang PLLs”. In 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), pages 1–4, June 2015. [27] F.-T. Chen et al., “A 10-Gb/s low jitter single-loop clock and data recovery circuit with rotational phase frequency detector,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 11, pp. 3278–3287, 2014. [28] R. Shivnaraine et al. “An 8–11 Gb/s reference-less bang-bang CDR enabled by “Phase reset”,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, no. 7, pp. 2129–2138, July. 2014. [29] M. Harwood et al., “A 225mW 28Gb/s SerDes in 40nm CMOS With 13dB of Analog Equalization for 100GBASE-LR4 and Optical Transport Lane 4.4 Applications,” ISSCC Dig. Tech. Papers, pp. 326- 327, Feb. 2012. [30] D. Cui, et al., “A Dual 23Gb/s CMOS Transmitter/Receiver Chipset for 40Gb/s RZ-DQPSK and CS-RZ-DQPSK Optical Transmission,” in ISSCC Dig. Tech. Papers, Feb. 2012, pp. 330-331. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21561 | - |
dc.description.abstract | 隨著通訊系統對資料傳送速率的要求越來越高,100-Gb/s乙太網路系統將開始全面普及,作為乙太網路的重要組成部分,高速接收器電路顯得尤為關鍵,本論文中提出25-Gb/s NRZ接收端,包含了可變增益放大器、限幅放大器、連續時間等化器、自適應的四抽頭決斷反饋等化器、基於相位內插器的全數位時脈資料恢復電路,以及具有三個抽頭前饋式等化器的輸出級電路。
25-Gb/s NRZ接收器在量測上達到在奈奎斯特頻率有11.5dB損耗的輸入資料下仍能恢復出無誤碼(BER<〖10〗^(-12))的全速資料,以及具有輸入資料為50mV擺幅時輸出仍能達到無誤碼的靈敏度,全數位時脈資料恢復電路的抖動容忍度也優於IEEE 802.3的標準,時脈資料恢復電路的迴路頻寬在量測上達到了2MHz到10MHz可調,並且在輸入資料具有100MHz的正弦抖動時電路仍能有0.48UIp-p的抖動振幅容忍度(BER<〖10〗^(-12)),另外基於相位內插器的時脈資料恢復電路具有-720ppm ~ +1120ppm的頻差容忍度,而三個抽頭的前饋式等化器在量測上也達到了將近8dB的補償量,輸出級可將輸出訊號擺福在200mV~800mV之間透過控制碼進行調整,量測上電路即便到28Gb/s、以及30Gb/s的輸入仍能正常運作順利恢復出資料。 | zh_TW |
dc.description.abstract | The data transmission speed is getting faster and faster in communication system nowadays, 100-Gb/s Ethernet system will be popular. As an important part of the Ethernet system, high-speed receiver circuits are especially critical. In this thesis, a 25-Gb/s NRZ receiver is proposed, which includes a variable gain amplifier, a limiting amplifier, a continuous time linear equalizer, an adaptive 4-tap decision feedback equalizer, a phase interpolator-based full digital clock and data recovery circuit and an output driver with a three-tap feedforward equalizer.
On the measurement, 25-Gb/s NRZ receiver can recover the input with 11.5dB loss to the error-free (BER < 〖10〗^(-12)) data output, and with the sensitivity that output can be achieved error-free (BER<〖10〗^(-12)) under 50mV input swing. The jitter tolerance of the all-digital clock and data recovery circuit is better than the IEEE 802.3 standard. The loop bandwidth of CDR on measurement can be adjusted from 2MHz to 10MHz, and the CDR can still have 0.48 UIp-p jitter amplitude tolerance when the input data has 100MHz sinusoidal jitter. PI-based CDR has a frequency tolerance of -720ppm ~ +1120ppm. The three-tap feedforward equalizer also achieves nearly 8-dB boosting in measurement, and the output swing can be controlled between 200mV~800mV. The receiver can recover the data even after the input up to 28-Gb/s and 30-Gb/s. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:37:58Z (GMT). No. of bitstreams: 1 ntu-108-R05943122-1.pdf: 5092657 bytes, checksum: b731d7714df26fbbf522ccd27aa64b79 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii CONTENTS iii LIST OF FIGURES v LIST OF TABLES x Chapter1 Introduction 1 1.1 Motivation 1 1.2 Dissertation Organization 3 Chapter 2 Introduction of 100GbE System 4 2.1 Typical architecture of 100GbE System 4 Chapter 3 A 25G-b/s NRZ Receiver circuit 6 3.1 Architecture and Building Blocks 6 3.2 Front-end Circuit 7 3.2.1 Limiting amplifier 7 3.2.2 Continuous time linear equalizer 15 3.2.3 Variable gain amplifier 21 3.3 Slicer and Decision Feedback Equalizer 22 3.2.3 Decision feedback equalizer 23 3.4 Feedforward Equalizer 39 3.5 Clock and Data Recovery Circuit 45 3.5.1 Phase Detector 46 3.5.2 Majority Voter 51 3.5.3 Phase Interpolator 53 3.5.4 Linearized Model of Analog CDR 57 3.5.5 Linearized Model of All-digital CDR 62 3.5.6 Slewing Phenomenon of BBPD CDR 68 3.5.7 Frequency Offset Problem of PI-based BBPD CDR 72 Chapter 4 Measurement 82 4.1 Measurement Setup 82 4.2 Measurement Results 85 Chapter 5 Conclusions 91 REFERENCE 92 | |
dc.language.iso | en | |
dc.title | 25-Gb/s不歸零碼接收器之設計 | zh_TW |
dc.title | Design of 25-Gb/s NRZ Receiver | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉宗德,彭朋瑞 | |
dc.subject.keyword | 限幅放大器,可變增益放大器,連續時間等化器,決斷反饋等化器,相位內插器,砰砰相位偵測器,全數位時脈資料恢復電路,前饋式等化器,抖動容忍度,頻差容忍度,靈敏度, | zh_TW |
dc.subject.keyword | Limiting amplifier,variable gain amplifier,continuous time linear equalizer,decision feedback equalizer,phase interpolator,bang bang phase detector,all digital PI based CDR,feedforward equalizer,jitter tolerance,frequency offset tolerance,sensitivity, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201901645 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
Appears in Collections: | 電子工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 4.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.