請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21541
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊鎧鍵(Kai-Chien Yang) | |
dc.contributor.author | Shih-Hsin Cheng | en |
dc.contributor.author | 鄭世昕 | zh_TW |
dc.date.accessioned | 2021-06-08T03:37:18Z | - |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-22 | |
dc.identifier.citation | 1. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104(4):503-516.
2. Libby P. Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biololgy. 2012;32(9):2045-2051. 3. Ross R. Atherosclerosis--an inflammatory disease. The New England journal of medicine. 1999;340(2):115-126. 4. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science (New York, NY). 1973;180(4093):1332-1339. 5. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arteriosclerosis, Thrombosis, and Vascular Biololgy. 2007;27(5):1159-1165. 6. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Review. 2011;91(1):327-387. 7. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-241. 8. E. B. Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. The New England journal of medicine. 1997.:337:1360-1369. 9. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385(9963):117-171. 10. World Health Organization. The top 10 causes of death. 2019; https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 24 May, 2018. 11. Welfare TMoHa. 106年國人死因統計結果. 2018; https://www.mohw.gov.tw/cp-3795-41794-1.html. Accessed June 15, 2018. 12. Pahwa R, Jialal I. Atherosclerosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing StatPearls Publishing LLC.; 2019. 13. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801-809. 14. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nature medicine. 2011;17(11):1410-1422. 15. Owen DR, Lindsay AC, Choudhury RP, Fayad ZA. Imaging of atherosclerosis. Annual Review of Medicine. 2011;62:25-40. 16. Tavafi M. Complexity of diabetic nephropathy pathogenesis and design of investigations. Journal of renal injury prevention. 2013;2(2):59-62. 17. Nayer A, Ortega LM. Catastrophic antiphospholipid syndrome: a clinical review. Journal of nephropathology. 2014;3(1):9-17. 18. Legein B, Temmerman L, Biessen EA, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cellular and molecular life sciences : CMLS. 2013;70(20):3847-3869. 19. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. The New England journal of medicine. 2005;352(16):1685-1695. 20. Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nature Reviews Rheumatology. 2015;11(7):390-400. 21. Alagona P, Jr., Ahmad TA. Cardiovascular disease risk assessment and prevention: current guidelines and limitations. The Medical clinics of North America. 2015;99(4):711-731. 22. Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis : Current view and future perspective on lipoprotein modification treatment. Netherlands Heart Journal. 2017;25(4):231-242. 23. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13-e115. 24. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701. 25. Hess CN, Norgren L, Ansel GM, et al. A Structured Review of Antithrombotic Therapy in Peripheral Artery Disease With a Focus on Revascularization: A TASC (InterSociety Consensus for the Management of Peripheral Artery Disease) Initiative. Circulation. 2017;135(25):2534-2555. 26. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas, Tex). 1985;5(3):293-302. 27. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research. 1983;53(4):502-514. 28. Davies PF, Shi C, Depaola N, Helmke BP, Polacek DC. Hemodynamics and the focal origin of atherosclerosis: a spatial approach to endothelial structure, gene expression, and function. Annals of the New York Academy of Sciences. 2001;947:7-16; discussion 16-17. 29. Yang Q, Xu J, Ma Q, et al. PRKAA1/AMPKalpha1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nature Communication. 2018;9(1):4667. 30. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature clinical practice Cardiovascular medicine. 2009;6(1):16-26. 31. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(30):13450-13455. 32. Heo KS, Lee H, Nigro P, et al. PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. Journal of Cell Biology. 2011;193(5):867-884. 33. Magid R, Davies PF. Endothelial protein kinase C isoform identity and differential activity of PKCzeta in an athero-susceptible region of porcine aorta. Circulation Research. 2005;97(5):443-449. 34. Chang K, Weiss D, Suo J, et al. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation. 2007;116(11):1258-1266. 35. Li R, Beebe T, Jen N, et al. Shear stress-activated Wnt-angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(10):2268-2275. 36. Civelek M, Manduchi E, Riley RJ, Stoeckert CJ, Jr., Davies PF. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circulation Research. 2009;105(5):453-461. 37. Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. Journal of Clinical Investigation. 2006;116(1):49-58. 38. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. The Journal of experimental medicine. 2004;199(10):1305-1315. 39. Dekker RJ, Boon RA, Rondaij MG, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood. 2006;107(11):4354-4363. 40. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. The Journal of biological chemistry. 2007;282(18):13769-13779. 41. Zhou G, Hamik A, Nayak L, et al. Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. Journal of Clinical Investigation. 2012;122(12):4727-4731. 42. McMurray J, Pfeffer MA. New Therapeutic Options in Congestive Heart Failure. Circulation. 2002;105(18):2223-2228. 43. McMurray J, Pfeffer MA. New therapeutic options in congestive heart failure: Part I. Circulation. 2002;105(17):2099-2106. 44. Teixeira BC, Lopes AL, Macedo RCO, et al. Inflammatory markers, endothelial function and cardiovascular risk. Jornal Vascular Brasileiro. 2014;13(2):108-115. 45. Galley HF, Webster NR. Physiology of the endothelium. British Journal Anaesthesia. 2004;93(1):105-113. 46. Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Frontiers in physiology. 2015;6:365. 47. Tritto I, Ambrosio G. The multi-faceted behavior of nitric oxide in vascular 'inflammation': catchy terminology or true phenomenon? Cardiovascular research. 2004;63(1):1-4. 48. Zardi EM, Afeltra A. Endothelial dysfunction and vascular stiffness in systemic lupus erythematosus: Are they early markers of subclinical atherosclerosis? Autoimmunity Review. 2010;9(10):684-686. 49. Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. Journal of Korean Medical Science. 2015;30(9):1213-1225. 50. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Current vascular pharmacology. 2012;10(1):4-18. 51. Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. European heart journal. 2013;34(41):3175-3181. 52. Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmunity Review. 2010;9(12):830-834. 53. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(6):998-1005. 54. Abaci HE, Shen YI, Tan S, Gerecht S. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease. Scientific reports. 2014;4:4951. 55. Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial cell sensing of flow direction. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(9):2130-2136. 56. Knoblach B, Keller BO, Groenendyk J, et al. ERp19 and ERp46, new members of the thioredoxin family of endoplasmic reticulum proteins. Molecular & cellular proteomics : MCP. 2003;2(10):1104-1119. 57. Sullivan DC, Huminiecki L, Moore JW, et al. EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. The Journal of biological chemistry. 2003;278(47):47079-47088. 58. Shih YC, Chen CL, Zhang Y, et al. Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circilation Research. 2018;122(8):1052-1068. 59. Chang X, Cui Y, Zong M, et al. Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. The Journal of rheumatology. 2009;36(5):872-880. 60. Wang L, Song G, Chang X, et al. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway. Oncogene. 2015;34(36):4735-4745. 61. Wang Y, Ma Y, Lu B, Xu E, Huang Q, Lai M. Differential expression of mimecan and thioredoxin domain-containing protein 5 in colorectal adenoma and cancer: a proteomic study. Experimental biology and medicine (Maywood, NJ). 2007;232(9):1152-1159. 62. Zhang L, Hou Y, Li N, Wu K, Zhai J. The influence of TXNDC5 gene on gastric cancer cell. Journal of cancer research and clinical oncology. 2010;136(10):1497-1505. 63. Santillan A, Rubin DG, Foley CP, et al. Cannulation of the internal carotid artery in mice: a novel technique for intra-arterial delivery of therapeutics. Journal of Neuroscience Methods. 2014;222:106-110. 64. Steenman M, Espitia O, Maurel B, et al. Identification of genomic differences among peripheral arterial beds in atherosclerotic and healthy arteries. Scientific reports. 2018;8(1):3940. 65. Liu W, Zhao Y, Wu J. Gene expression profile analysis of the progression of carotid atherosclerotic plaques. Molecular medicine reports. 2018;17(4):5789-5795. 66. Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(11):2509-2517. 67. Li R, Paul A, Ko KW, et al. Interleukin-7 induces recruitment of monocytes/macrophages to endothelium. European heart journal. 2012;33(24):3114-3123. 68. Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. British journal of pharmacology. 2019;176(2):189-196. 69. Leach MD, Klipp E, Cowen LE, Brown AJ. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature reviews Microbiology. 2012;10(10):693-704. 70. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Developmental biology. 2001;230(2):230-242. 71. Tang Y, Harrington A, Yang X, Friesel RE, Liaw L. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis. 2010;48(9):563-567. 72. Alva JA, Zovein AC, Monvoisin A, et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Developmental dynamics : an official publication of the American Association of Anatomists. 2006;235(3):759-767. 73. Chagne D, Vanderzande S, Kirk C, et al. Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus x domestica Borkh.) using the OpenArray(R) platform. Horticulture Research. 2019;6:30. 74. Shastry BS. SNP alleles in human disease and evolution. Journal of human genetics. 2002;47(11):561-566. 75. Liu W, Zhang Y, Yu CM, et al. Current understanding of coronary artery calcification. Journal of Geriatric Cardiology. 2015;12(6):668-675. 76. O'Donnell CJ, Kavousi M, Smith AV, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(25):2855-2864. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21541 | - |
dc.description.abstract | 研究背景:動脈粥狀硬化(Atherosclerosis)是一種漸進性的發炎疾病,其病理特徵在於過度的脂肪堆積於血管內膜,並進一步形成動脈粥狀硬化斑塊(atherosclerotic plaques)。動脈粥狀硬化造成的心血管疾病在世界各國都是重要的死因之一。動脈粥狀硬化斑塊好發於血管彎曲、分枝及分岔的部位,主要是因為其幾何結構容易使血液產生擾流(disturbed flow),造成血管內皮細胞的機械力感受器(mechanosensor)接收到的切應力(shear stress)降低,進而引發致病性的不良反應,包括促進血管內皮細胞發炎,破壞細胞連接(cell junction),及刺激動脈硬化相關訊息傳遞而導致動脈粥狀硬化發生。然而,內皮細胞受血流切應力調節導致功能異常的分子機轉目前仍不清楚。透過結合生物資訊學與臨床及基礎的實驗,我們最近找到了對動脈粥狀硬化及血管內皮細胞受血流切應力調節具有重要性的新型媒介,是一個內質網蛋白TXNDC5,對於內皮細胞功能異常及動脈粥狀硬化發生具有潛在重要的影響力。
研究目的:探討TXNDC5在內皮細胞功能異常及動脈粥狀硬化中扮演的角色,評估是否能作為治療動脈粥狀硬化的標的。 實驗方法與結果:TXNDC5的基因及蛋白表達量在受到擾流刺激的人類主動脈內皮細胞中有明顯上升,同時在人類動脈粥狀硬化病灶上也有較高的表現量。透過在ApoE-/-小鼠施行頸動脈部分結紮(partial carotid artery ligation)手術以製造體內擾流動物模型,我們發現TXNDC5在內皮細胞中被大量表現,此外,在ApoE-/-小鼠餵食12週高脂飼料的動脈硬化動物模型中也發現同樣的結果。而這樣的現象,同時伴隨著具有血管保護效果的內皮一氧化氮合成酶(endothelial nitric oxide synthase, eNOS)的表現量下降,以及內皮細胞功能的異常,如一氧化氮(nitric oxide, NO)生成減少、內皮穿透性(permeability)及內皮細胞周轉率(turnover rate)增加。有趣的是,TXNDC5的敲弱(knockdown)或過度表達(overexpression)並不影響eNOS的基因表現。HSP90是一個調節eNOS功能重要的蛋白,在敲弱HSP90情況下,則可以反轉因TXNDC5缺乏造成eNOS上調的結果,說明了HSP90在TXNDC5調節的eNOS的過程中是關鍵的角色。重要的是,在 ApoE-/-小鼠中剔除(knockout) Txndc5,可以有效的減少高血脂刺激或是頸動脈部分結紮手術所導致的動脈粥狀硬化,同時也發現了減少eNOS下調的結果。這樣的血管保護效果則在給予了小鼠一氧化氮合成酶(nitric oxide synthase, NOS)抑制劑: L-NAME,而消失。這些實驗結果證實了TXNDC5引致的內皮細胞功能異常及動脈粥狀硬化是透過調節eNOS而發生的。我們更進一步發現在ApoE-/-小鼠中將內皮細胞專一性剔除Txndc5,也可以顯著的減少頸動脈部分結紮手術導致的動脈粥狀硬化,闡明TXNDC5特別在內皮細胞中對動脈粥狀硬化的發生具有格外的重要性。總結而論,這些實驗闡述TXNDC5透過影響eNOS,使得在血液擾流與高血脂刺激下造成動脈粥狀硬化,而扮演著舉足輕重的角色。 結論:目前的研究證明了內質網蛋白TXNDC5,是藉由調節eNOS而影響內皮細胞功能異常與動脈粥狀硬化。透過剔除Txndc5可以減少ApoE-/- 小鼠因血液擾流及高血脂所引致的動脈粥狀硬化斑塊的產生,因此,TXNDC5可能是一個具有預防或治療動脈粥狀硬化造成心血管疾病的新型治療標的。 | zh_TW |
dc.description.abstract | Background: Atherosclerosis is a progressive inflammatory disease characterized by the accumulation of lipids in the arterial intima and build-up of atherosclerotic plaques. Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of death around the world. Interestingly, atherosclerotic lesions preferentially develop at the sites of curvature, branching and bifurcation, the areas under abnormal hemodynamics in the arteries, which leads to lower vessel wall shear stress detected by endothelium and trigger adverse reactions. However, the exact molecular mechanism of mechanoregulation in response to shear stress remains unclear. Exploiting the bioinformatic analysis and RNASeq dataset obtained from human aortic endothelial cells (HAECs) stimulated with atherogenic disturbed flow (DF), we identified thioredoxin domain containing 5 (TXNDC5), an endoplasmic reticulum protein with the enzyme activity of a protein disulfide isomerase, as a potentially important mediator of endothelial dysfunction and atherosclerosis.
Purpose: To determine the role of TXNDC5 in endothelial dysfunction and atherosclerosis, and to further explore potential therapeutic approach against ASCVD. Methods & Results: TXNDC5 expression was significantly upregulated in HAECs exposed to DF, as well as in the human atherosclerotic lesions. Endothelial TXNDC5 level was markedly upregulated in the common carotid arteries (CCA) from ApoE-/- mice after partial carotid artery ligation (PCAL), a well-described method to generate DF in CCA, as well as from ApoE-/- mice fed with 12-week high-fat diet (HFD). The upregulation of endothelial TXNDC5 was accompanied by downregulation of endothelial nitric oxide synthase (eNOS), an atheroprotective factor in endothelial cells. Functional assay also demonstrated TXNDC5 induced-endothelial dysfunction, such as decreasing NO production, increasing cell permeability and turnover rate. Interestingly, neither knockdown nor overexpression of TXNDC5 affected NOS3 gene expression. Depletion of HSP90, a protective molecule for eNOS regulation, reversed TXNDC5 deficiency-induced upregulation of eNOS in HAECs, suggesting HSP90 was critical for TXNDC5 in regulating eNOS. Importantly, ApoE-/- x Txndc5-/-, compared with ApoE-/-, mice showed significantly reduced aortic atherosclerotic lesion areas after 12-week HFD treatment. Similarly, targeted deletion of Txndc5 prevented exacerbation of atheroma and eNOS downregulation resulted from 2-week PCAL and HFD in ApoE-/- mice. These atheroprotective effects of TXNDC5 deficiency were diminished after treatment with L-NAME, a NOS inhibitor. These data strongly suggest that TXNDC5 promotes endothelial dysfunction and atherosclerosis by regulating eNOS. Moreover, endothelium-specific knockout of Txndc5 (Tie2-Cre/ERT2 x Txndc5fl/fl) in ApoE-/- mice also showed significantly attenuated atherosclerotic lesion caused by PCAL, demonstrating the atherogenic role of endothelial TXNDC5. Taken together, the results from these experiments suggest an essential role of TXNDC5 in DF/dyslipidemia-induced endothelial dysfunction and atherosclerosis through eNOS regulation. Conclusion: The present study revealed a previously undiscovered role of ER protein TXNDC5 in modulating endothelial function in response to atherogenic stimuli by post-transcriptional regulation of eNOS. Targeted deletion of Txndc5 protects against endothelial dysfunction and atherosclerosis in ApoE-/- mice. Targeting TXNDC5, therefore, could be a novel therapeutic approach to treat or prevent atherosclerotic cardiovascular diseases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:37:18Z (GMT). No. of bitstreams: 1 ntu-108-R06443003-1.pdf: 4863440 bytes, checksum: f2ac2825588215e0111444c7d643c050 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 1
中文摘要 2 Abstract 4 Table of Contents 6 List of Figures 10 List of Tables 11 Abbreviation tables 12 Chapter 1 Introduction 16 1.1 Atherosclerosis 16 1.1.1 Epidemiology 16 1.1.2 Etiology 17 1.1.3 Pathology 18 1.1.4 Prevention and treatment 19 1.2 Atherosclerosis and hemodynamics 20 1.3 Atherosclerosis and endothelium 22 1.4 Thioredoxin domain containing 5 (TXNDC5) 24 1.5 Aim of study 24 Chapter 2 Materials and Methods 26 2.1 Primary culture of human aortic endothelial cells 26 2.2 Transduction and transfection of HAECs 26 2.2.1 siRNA transfection 26 2.2.2 Lentiviral transduction 26 2.2.3 mRNA transfection 27 2.3 Atherorelevant cone plate flow system 27 2.4 Endothelial functional assay 28 2.4.1 Nitric oxide production assay 28 2.4.2 Proliferation assay 28 2.4.3 Apoptosis assay 28 2.4.4 Barrier integrity measurement 29 2.4.4.1 Transendothelial electrical resistance 29 2.4.4.2 Dextran permeability assay 29 2.4.5 Monocyte adhesion assay 30 2.5 Protein stability assay 30 2.6 TXNDC5 AAA mutant lacking PDI activity 31 2.7 Promoter luciferase activity assay 31 2.8 Immunoprecipitation 32 2.9 Generation of Txndc5 knockout (KO) mice using CRISPR/Cas9 genome-editing technology 32 2.10 Endothelium-specific knockout of Txndc5 mouse studies 33 2.11 Mouse model of partial carotid artery ligation 34 2.12 En face analysis of aortic atherosclerosis 35 2.13 Endothelial reporter mouse studies 35 2.14 Animal studies with parabiosis 36 2.15 RNA extraction and qRT-PCR 37 2.15.1 In vitro RNA extraction 37 2.15.2 Intimal RNA isolation from carotid arteries 37 2.16 Western blot analysis 38 2.17 Histology 39 2.17.1 Oil red O staining 39 2.17.2 H&E staining 39 2.18 Immunofluorescent staining 40 2.19 Statistical analyses 40 Chapter 3 Results 41 3.1 RNASeq analyses revealed TXNDC5 as a potential mediator of mechanoregulation of endothelium 41 3.2 Microarray analyses revealed that TXNDC5 was dysregulated in human and mouse model of atherosclerosis 42 3.3 TXNDC5 was highly upregulated in the arterial endothelium under atherogenic stimuli 43 3.4 Targeted deletion of Txndc5 attenuated atherosclerotic burden in ApoE-/- mice 44 3.5 Targeted deletion of Txndc5 did not affect inflammation-associated markers in ApoE-/- mice 46 3.6 TXNDC5 is critical for eNOS dysregulation in response to atherogenic stimuli 47 3.7 TXNDC5-mediated endothelial dysfunction is eNOS-dependent 48 3.8 HSP90 is required for TXNDC5-mediated eNOS regulation 51 3.9 Endothelium-specific knockout of Txndc5 mitigates carotid atherosclerosis caused by PCAL in ApoE-/- mice 53 Chapter 4 Discussion 56 4.1 To determine the potential role of TXNDC5 as a novel therapeutic approach 56 4.2 KLF2 regulates TXNDC5 expression as a critical mechanoregulator in response to shear stress 57 4.3 Using vascular endothelial cadherin-Cre/ERT2 mouse line as a more endothelium-specific conditional knockout animal model 58 4.4 En face staining of aorta and carotid artery from mice 60 4.5 SNPs near TXNDC5 are associated with coronary artery calcification 61 References 62 Figures 68 Appendix 96 | |
dc.language.iso | en | |
dc.title | 內質網蛋白TXNDC5藉由調節eNOS導致內皮細胞功能異常及動脈粥狀硬化 | zh_TW |
dc.title | ER protein TXNDC5 contributes to endothelial dysfunction and atherosclerosis by regulating eNOS | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 裘正健(Jeng-Jiann Chiu),楊瑞彬(Ruey-Bing Yang),陳文彬(Wen-Pin Chen) | |
dc.subject.keyword | 動脈粥狀硬化,內皮細胞功能異常,擾流,切應力,Thioredoxin domain containing 5 (TXNDC5), | zh_TW |
dc.subject.keyword | Atherosclerosis,Endothelial dysfunction,Disturbed flow,Shear stress,Thioredoxin domain containing 5 (TXNDC5), | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201901810 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-23 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。