Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.authorLi-An Chungen
dc.contributor.author鍾禮安zh_TW
dc.date.accessioned2021-06-08T03:36:21Z-
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-26
dc.identifier.citation[1] M. J. Ackerman. The visible human project. Proceedings of the IEEE, 86(3):504–511, March 1998.
[2] A. S. Arnold, S. Salinas, D. J. Hakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Computer Aided Surgery, 5(2):108–119, 2000. PMID: 10862133.
[3] A. Bauer, F. Paclet, V. Cahouet, A. H. Dicko, O. Palombi, F. Faure, and J. Troccaz. Interactive Visualization of Muscle Activity During Limb Movements: Towards Enhanced Anatomy Learning. In Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM 2014), pages 191–198, Vienne, Austria, Sept. 2014. Eurographics Association.
[4] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam, 14/05/2019.
[5] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR, abs/1012.2599, 12 2010.
[6] A.-H. Dicko, T. Liu, B. Gilles, L. Kavan, F. Faure, O. Palombi, and M.-P. Cani. Anatomy transfer. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA), 32(6), 2013.
[7] J. Gong, R. Bachler, M. Sati, and L.-P. Nolte. Restricted surface matching a new approach to registration in computer assisted surgery. In J. Troccaz, E. Grimson, and R. Mosges, editors, CVRMed-MRCAS’97, pages 597–605, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.
[8] C.-C. Ho, F.-C. Wu, B.-Y. Chen, Y.-Y. Chuang, and M. Ouhyoung. Cubical marching squares: Adaptive feature preserving surface extraction from volume data. In Computer graphics forum, volume 24-3, pages 537–545. Wiley Online Library, 2005.
[9] P. Kadlecek, A.-E. Ichim, T. Liu, J. Krivanek, and L. Kavan. Reconstructing personalized anatomical models for physics-based body animation. ACM Trans. Graph., 35(6), 2016.
[10] M. Khoury, Q.-Y. Zhou, and V. Koltun. Learning compact geometric features. In International Conference on Computer Vision (ICCV), 2017.
[11] R. Kikinis, S. D. Pieper, K. G. Vosburgh, and F. A. Jolesz. 3D Slicer: A Platform for SubjectSpecific Image Analysis, Visualization, and Clinical Support, pages 277–289. Springer New York, New York, NY, 2014.
[12] R. Kneebone and R. Aggarwal. Surgical training using simulation, 2009.
[13] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface extraction from volume data. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages 57–66, New York, NY, USA, 2001. ACM.
[14] B. Landman, Z. Xu, J. E. Igelsias, M. Styner, T. R. Langerak, and A. Klein. 2015 miccai multi-atlas labeling beyond the cranial vault – workshop and challenge, 2015.
[15] B. H. Le and Z. Deng. Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph., 33(4):84:1–84:10, July 2014.
[16] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015.
[17] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, Aug. 1987.
[18] D. Nogneng and M. Ovsjanikov. Informative descriptor preservation via commutativity for shape matching. Comput. Graph. Forum, 36:259–267, 2017.
[19] S. Owada, T. Harada, P. Holzer, and T. Igarashi. Volume Painter: Geometry-Guided Volume Modeling by Sketching on the Cross-Section. In C. Alvarado and M.-P. Cani, editors,Eurographics Workshop on Sketch-Based Interfaces and Modeling. The Eurographics Association, 2008.
[20] Plasticboy Pictures. MAYA, 3DS MAX, CINEMA 4D AND BLENDER RIGGED V07 Anatomy 3D models. Plasticboy Pictures, Plasticboy Pictures, 2009.
[21] S. Saito, Z.-Y. Zhou, and L. Kavan. Computational bodybuilding: Anatomically-based modeling of human bodies. ACM Trans. Graph., 34(4), 2015.
[22] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, and H.-P. Seidel. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’04, pages 175–184, New York, NY, USA, 2004. ACM.
[23] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi. Volumetric modeling with diffusion surfaces. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH Asia), 29(6):180:1–180:8, 2010.
[24] M. B. The MakeHuman team. MakeHuman (1.1.1).
[25] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan. Scanning 3d full human bodies using kinects. IEEE transactions on visualization and computer graphics, 18(4):643–650, 2012.
[26] Q. Zhou, J. Park, and V. Koltun. Fast global registration. In ECCV (2), volume 9906 of Lecture Notes in Computer Science, pages 766–782. Springer, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21512-
dc.description.abstract正確的內部組織結構的人體虛擬模型對於醫學應用而言相當重要,例如手術模擬、構造分析等,然而,建構一個三維空間的精準虛擬模型通常需要有經驗的模型師花費大量的時間與精力來完成。我們在本篇論文提出了一套半自動化的方法來更有效率的建構之於特定目標的人體模型,我們不只將人體樣版模型轉換以符合目標外觀,還結合醫學影像使內部器官組織更加準確定位。我們透過求得 Laplacian 變形場來變形我們的樣版模型,而整套流程將能處理不同的人體醫學內部結構資料如電腦斷層掃描與核磁共振的切片資料。我們呈現了幾個變形結果,這些結果展示我們的方法在目標區域的準確度不只是在視覺上有效,而在醫學上也兼顧其內容的正確性,而我們也透過兩套不同的 Error Metrics 來評估我們的變形結果。zh_TW
dc.description.abstractVirtual character with accurate internal anatomy is critical for medical applications, such as surgical simulation.
However, constructing an accurate anatomic model is both labor and time intensive process.
In this paper, we propose a semi-automatic framework to reconstruct accurate patient-specific anatomic model efficiently.
We do not only transfer a template anatomic model to match the patient's external body shape but also accurately match the internal anatomic structure represented by medical imaging by solving a Laplacian deformation field.
Our framework is able to handle different medical imaging techniques, including CT and MRI.
We demonstrate several results to show that our transferred results are not only visually plausible but also medical accurate around the affected regions, and
also evaluate our accurate anatomic reconstruction using two different metrics to quantitatively measure the accuracy.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:36:21Z (GMT). No. of bitstreams: 1
ntu-108-R06725025-1.pdf: 33670695 bytes, checksum: fbd933eda9a0b3f319af590717c32977 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Related works 5
Chapter 3 Overview 8
Chapter 4 Method 10
4.1 Skin Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.1 Subject body model preparation . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Functional Map Correspondences . . . . . . . . . . . . . . . . . . . 13
4.1.3 Transfer Displacement Field . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Modeling Affected Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Affected Region Organ Modeling . . . . . . . . . . . . . . . . . . . 17
4.2.2 Organ Correspondences . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Organ Transfer Field . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 5 Result 21
5.1 Quantitative Error Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 6 Conclusion and Future works 27
Bibliography 30
Appendix 33
A Tools for Transferring Method . . . . . . . . . . . . . . . . . . . . . . . . . 33
B Parameters in Functional Mapping Correspondences . . . . . . . . . . . . 36
dc.language.isoen
dc.title利用醫學影像重建精確的完整人體模型zh_TW
dc.titleAccurate Anatomy Transfer using Medical Imagingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王昱舜(Yu-Shuen Wang),朱宏國(Hung-Kuo Chu)
dc.subject.keyword樣板變形,表面模型,模型轉移(Anatomy Transfer),擬合空間,半自動操作,zh_TW
dc.subject.keywordtemplate deform,surface model,Anatomy Transfer,fitting voxel,semi-automatic method,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201900890
dc.rights.note未授權
dc.date.accepted2019-07-26
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
32.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved