Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21509Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Shih-Han Huang | en |
| dc.contributor.author | 黃詩翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:36:15Z | - |
| dc.date.copyright | 2021-04-07 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-03-21 | |
| dc.identifier.citation | [1] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, 'The role of renewable energy in the global energy transformation', Energy Strategy Rev. 2019, 24, 38. [2] M. A. Green, 'The path to 25% silicon solar cell efficiency: History of silicon cell evolution', Prog. Photovoltaics. 2009, 17, 183. [3] C. E. Fritts, 'On a new form of selenium cell, and some electrical discoveries made by its use', Am. J. Sci. 1883, Series 3 Vol. 26, 465. [4] E. F. Kingsbury, R. S. Ohl, 'Photoelectric properties of ionically bombarded silicon', Bell Syst. tech. j. 1952, 31, 802. [5] G. L. Pearson, 'PV founders award luncheon', presented at 18th IEEE Photovoltaic Specialists Conference, Las Vegas, IEEE, New York, 1985. [6] A. Louwen, W. van Sark, R. Schropp, A. Faaij, 'A cost roadmap for silicon heterojunction solar cells', Sol. Energy Mater. Sol. 2016, 147, 295. [7] S. Chu, Y. Cui, N. Liu, 'The path towards sustainable energy', Nature Materials 2017, 16, 16. [8] C.-F. Lin, W.-F. Su, C.-I. Wu, I. C. Cheng, Organic, Inorganic and Hybrid Solar Cells: Principles and Practice, John Wiley Sons, 2012. [9] 2019, Levelized Cost of Energy and Levelized Cost of Storage https://www.lazard.com/perspective/lcoe2019. [10] W. A. Badawy, 'A review on solar cells from Si-single crystals to porous materials and quantum dots', J. Adv. Res. 2015, 6, 123. [11] P. M. Sokolov, M. A. Zvaigzne, V. A. Krivenkov, A. P. Litvin, A. V. Baranov, A. V. Fedorov, P. S. Samokhvalov, I. R. Nabiev, 'Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications', Russ. Chem. Rev. 2019, 88, 370. [12] J. Ramanujam, U. P. Singh, 'Copper indium gallium selenide based solar cells – a review', Energy Environ. Sci. 2017, 10, 1306. [13] M. A. Green, 'Third generation photovoltaics: solar cells for 2020 and beyond', Physica E Low Dimens. Syst. Nanostruct. 2002, 14, 65. [14] M. A. Green, 'Third generation photovoltaics: Ultra-high conversion efficiency at low cost', Prog. Photovoltaics. 2001, 9, 123. [15] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells', J. Am. Chem. Soc. 2009, 131, 6050. [16] M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang, L. Han, 'Cost-Performance Analysis of Perovskite Solar Modules', Adv. Sci. 2017, 4, 1600269. [17] NREL, 2020, https://www.nrel.gov/pv/assets/pdfs/best. [18] Y. Zhang, S.-G. Kim, D. Lee, H. Shin, N.-G. Park, 'Bifacial stamping for high efficiency perovskite solar cells', Energy Environ. Sci. 2019, 12, 308. [19] K.-M. Lee, C.-J. Lin, B.-Y. Liou, S.-M. Yu, C.-C. Hsu, V. Suryanarayanan, 'Effect of anti-solvent mixture on the performance of perovskite solar cells and suppression hysteresis behavior', Org. Electron. 2019, 65, 266. [20] H.-C. Liao, P. Guo, C.-P. Hsu, M. Lin, B. Wang, L. Zeng, W. Huang, C. M. M. Soe, W.-F. Su, M. J. Bedzyk, M. R. Wasielewski, A. Facchetti, R. P. H. Chang, M. G. Kanatzidis, T. J. Marks, 'Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation', Adv. Energy Mater. 2017, 7, 1601660. [21] P.-H. Lee, B.-T. Li, C.-F. Lee, Z.-H. Huang, Y.-C. Huang, W.-F. Su, 'High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process', Sol. Energy Mater. Sol. 2020, 208, 110352. [22] S. van Reenen, M. Kemerink, H. J. Snaith, 'Modeling Anomalous Hysteresis in Perovskite Solar Cells', J. Phys. Chem. Lett. 2015, 6, 3808. [23] D.-H. Kang, N.-G. Park, 'On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis', Adv. Mater. 2019, 31, 1805214. [24] C. Liu, M. Cai, Y. Yang, Z. Arain, Y. Ding, X. Shi, P. Shi, S. Ma, T. Hayat, A. Alsaedi, J. Wu, S. Dai, G. Cao, 'A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells', J. Mater. Chem. A 2019, 7, 11086. [25] H. Dong, M. Yue, S. Pang, W. Zhu, D. Chen, H. Xi, Z. Lin, J. Chang, J. Zhang, Y. Hao, C. Zhang, 'A Modulated Double-Passivation Strategy Toward Highly Efficient Perovskite Solar Cells with Efficiency Over 21%', Sol. RRL 2019, 3, 1900291. [26] D. Shi, X. Qin, Y. Li, Y. He, C. Zhong, J. Pan, H. Dong, W. Xu, T. Li, W. Hu, J.-L. Brédas, O. M. Bakr, 'Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering', Sci. Adv. 2016, 2, e1501491. [27] M. Namatame, M. Yabusaki, T. Watanabe, Y. Ogomi, S. Hayase, K. Marumoto, 'Direct observation of dramatically enhanced hole formation in a perovskite-solar-cell material spiro-OMeTAD by Li-TFSI doping', Appl. Phys. Lett. 2017, 110, 123904. [28] F. Lamberti, T. Gatti, E. Cescon, R. Sorrentino, A. Rizzo, E. Menna, G. Meneghesso, M. Meneghetti, A. Petrozza, L. Franco, 'Evidence of Spiro-OMeTAD De-doping by tert-Butylpyridine Additive in Hole-Transporting Layers for Perovskite Solar Cells', Chem 2019, 5, 1806. [29] K. Sun, Y. Wang, H. Xu, J. Zhang, Y. Zhu, Z. Hu, 'Short-Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification', Sol. RRL 2019, 3, 1900089. [30] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, H. Han, 'Challenges for commercializing perovskite solar cells', Sci. 2018, 361, eaat8235. [31] Z. Bi, X. Rodríguez-Martínez, C. Aranda, E. Pascual-San-José, A. R. Goñi, M. Campoy-Quiles, X. Xu, A. Guerrero, 'Defect tolerant perovskite solar cells from blade coated non-toxic solvents', J. Mater. Chem. A 2018, 6, 19085. [32] Z. Yang, C.-C. Chueh, F. Zuo, J. H. Kim, P.-W. Liang, A. K. Y. Jen, 'High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition', Adv. Energy Mater. 2015, 5, 1500328. [33] H.-S. Ko, J.-W. Lee, N.-G. Park, '15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3', J. Mater. Chem. A 2015, 3, 8808. [34] C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, B. Xu, 'Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Based on Surface-Modified Perovskite Layer', J. Phys. Chem. C 2017, 121, 6546. [35] J. Troughton, K. Hooper, T. M. Watson, 'Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules', Nano Energy 2017, 39, 60. [36] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, 'Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers', Energy Environ. Sci. 2015, 8, 1544. [37] S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, J. Huang, 'Composition Engineering in Doctor-Blading of Perovskite Solar Cells', Adv. Energy Mater. 2017, 1700302. [38] W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, 'Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells', Nat. Commun. 2018, 9, 1625. [39] Y. Zhong, R. Munir, J. Li, M.-C. Tang, M. R. Niazi, D.-M. Smilgies, K. Zhao, A. Amassian, 'Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation', ACS Energy Lett. 2018, 1078. [40] Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, 'Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules', Nat. Energy 2018, 3, 560. [41] W.-Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Y. Deng, X. Xiao, Y. Feng, J. Huang, 'Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells', Sci. Adv. 2019, 5, 8925. [42] J. Wang, F. Di Giacomo, J. Brüls, H. Gorter, I. Katsouras, P. Groen, R. A. J. Janssen, R. Andriessen, Y. Galagan, 'Highly Efficient Perovskite Solar Cells Using Non-Toxic Industry Compatible Solvent System', Sol. RRL 2017, 1, 1700091. [43] K. L. Gardner, J. G. Tait, T. Merckx, W. Qiu, U. W. Paetzold, L. Kootstra, M. Jaysankar, R. Gehlhaar, D. Cheyns, P. Heremans, J. Poortmans, 'Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics', Adv. Energy Mater. 2016, 6, 1600386. [44] H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Grätzel, L. Han, 'A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules', Nat. 2017, 550, 92. [45] Z. Wei, H. Chen, K. Yan, S. Yang, 'Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells', Angew. Chem. Int. Ed. 2014, 53, 13239. [46] S. Chen, L. Zhang, L. Yan, X. Xiang, X. Zhao, S. Yang, B. Xu, 'Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through High-Throughput Inkjet Printing', Adv. Funct. Mater. 2019, 29, 1905487. [47] H. Eggers, F. Schackmar, T. Abzieher, Q. Sun, U. Lemmer, Y. Vaynzof, B. S. Richards, G. Hernandez-Sosa, U. W. Paetzold, 'Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains', Adv. Energy Mater. 2020, 10, 1903184. [48] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, D. G. Lidzey, 'Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition', Energy Environ. Sci. 2014, 7, 2944. [49] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, 'High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing', ACS Photonics 2015, 2, 680. [50] H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, 'Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell', Nano Energy 2016, 27, 352. [51] Z. Bi, Z. Liang, X. Xu, Z. Chai, H. Jin, D. Xu, J. Li, M. Li, G. Xu, 'Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells', Sol. Energy Mater. Sol. 2017, 162, 13. [52] J. E. Bishop, J. A. Smith, C. Greenland, V. Kumar, N. Vaenas, O. S. Game, T. J. Routledge, M. Wong-Stringer, C. Rodenburg, D. G. Lidzey, 'High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing', ACS Appl. Mater. Interfaces 2018, 10, 39428. [53] J. E. Bishop, C. D. Read, J. A. Smith, T. J. Routledge, D. G. Lidzey, 'Fully Spray-Coated Triple-Cation Perovskite Solar Cells', Sci. Rep. 2020, 10, 6610. [54] X.-P. Cui, K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, Y.-L. Song, 'Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells', ChemComm 2015, 51, 1457. [55] J.-H. Huang, K.-J. Jiang, X.-P. Cui, Q.-Q. Zhang, M. Gao, M.-J. Su, L.-M. Yang, Y. Song, 'Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells', Sci. Rep. 2015, 5, 15889. [56] J. H. Kim, S. T. Williams, N. Cho, C.-C. Chueh, A. K. Y. Jen, 'Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating', Adv. Energy Mater. 2015, 5, 1401229. [57] Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, 'Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer', Adv. Energy Mater. 2016, 6, 1600372. [58] D. Vak, K. Hwang, A. Faulks, Y.-S. Jung, N. Clark, D.-Y. Kim, G. J. Wilson, S. E. Watkins, '3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells', Adv. Energy Mater. 2015, 5, 1401539. [59] Y.-S. Jung, K. Hwang, Y.-J. Heo, J.-E. Kim, D. Lee, C.-H. Lee, H.-I. Joh, J.-S. Yeo, D.-Y. Kim, 'One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells', ACS Appl. Mater. Interfaces 2017, 9, 27832. [60] Y. Galagan, F. Di Giacomo, H. Gorter, G. Kirchner, I. de Vries, R. Andriessen, P. Groen, 'Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells', Adv. Energy Mater. 2018, 8, 1801935. [61] F. Di Giacomo, S. Shanmugam, H. Fledderus, B. J. Bruijnaers, W. J. H. Verhees, M. S. Dorenkamper, S. C. Veenstra, W. Qiu, R. Gehlhaar, T. Merckx, T. Aernouts, R. Andriessen, Y. Galagan, 'Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating', Sol. Energy Mater. Sol. 2018, 181, 53. [62] J. B. Whitaker, D. H. Kim, Bryon W. Larson, F. Zhang, J. J. Berry, M. F. A. M. van Hest, K. Zhu, 'Scalable slot-die coating of high performance perovskite solar cells', Sustain. Energy Fuels 2018, 2, 2442. [63] J.-E. Kim, S.-S. Kim, C. Zuo, M. Gao, D. Vak, D.-Y. Kim, 'Humidity-Tolerant Roll-to-Roll Fabrication of Perovskite Solar Cells via Polymer-Additive-Assisted Hot Slot Die Deposition', Adv. Funct. Mater. 2019, 29, 1809194. [64] H. Chen, Z. Wei, X. Zheng, S. Yang, 'A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells', Nano Energy 2015, 15, 216. [65] K. Hwang, Y.-S. Jung, Y.-J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D.-Y. Kim, D. Vak, 'Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells', Adv. Mater. 2015, 27, 1241. [66] J. Li, J. Dagar, O. Shargaieva, M. A. Flatken, H. Köbler, M. Fenske, C. Schultz, B. Stegemann, J. Just, D. M. Többens, A. Abate, R. Munir, E. Unger, '20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks', Adv. Energy Mater. 2021, n/a, 2003460. [67] C.-Y. Chang, Y.-C. Huang, C.-S. Tsao, W.-F. Su, 'Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering', ACS Appl. Mater. Interfaces 2016, 8, 26712. [68] M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest, K. Zhu, 'Perovskite ink with wide processing window for scalable high-efficiency solar cells', Nat. Energy 2017, 2, 17038. [69] J. Ding, Q. Han, Q.-Q. Ge, D.-J. Xue, J.-Y. Ma, B.-Y. Zhao, Y.-X. Chen, J. Liu, D. B. Mitzi, J.-S. Hu, 'Fully Air-Bladed High-Efficiency Perovskite Photovoltaics', Joule 2019, 3, 402. [70] B. Dou, J. B. Whitaker, K. Bruening, D. T. Moore, L. M. Wheeler, J. Ryter, N. J. Breslin, J. J. Berry, S. M. Garner, F. S. Barnes, S. E. Shaheen, C. J. Tassone, K. Zhu, M. F. A. M. van Hest, 'Roll-to-Roll Printing of Perovskite Solar Cells', ACS Energy Lett. 2018, 3, 2558. [71] Y. Deng, Q. Wang, Y. Yuan, J. Huang, 'Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures', Mater. Horiz. 2015, 2, 578. [72] V. Gutmann, 'Solvent effects on the reactivities of organometallic compounds', Coord. Chem. Rev. 1976, 18, 225. [73] R. E. Cramer, T. T. Bopp, 'Great E and C plot. Graphical display of the enthalpies of adduct formation for Lewis acids and bases', J. Chem. Educ. 1977, 54, 612. [74] Y. Yang, M. Yang, David T. Moore, Y. Yan, Elisa M. Miller, K. Zhu, Matthew C. Beard, 'Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films', Nat. Energy 2017, 2, 16207. [75] Y.-C. Huang, H.-C. Cha, C.-Y. Chen, C.-S. Tsao, 'A universal roll-to-roll slot-die coating approach towards high-efficiency organic photovoltaics', Prog. Photovoltaics. 2017, 25, 928. [76] Y.-C. Huang, C.-F. Li, Z.-H. Huang, P.-H. Liu, C.-S. Tsao, 'Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air', Sol. Energy 2019, 177, 255. [77] C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, 'One-step roll-to-roll air processed high efficiency perovskite solar cells', Nano Energy 2018, 46, 185. [78] J. Troughton, C. Charbonneau, M. J. Carnie, M. L. Davies, D. A. Worsley, T. M. Watson, 'Rapid processing of perovskite solar cells in under 2.5 seconds', J. Mater. Chem. A 2015, 3, 9123. [79] J. Troughton, M. J. Carnie, M. L. Davies, C. Charbonneau, E. H. Jewell, D. A. Worsley, T. M. Watson, 'Photonic flash-annealing of lead halide perovskite solar cells in 1 ms', J. Mater. Chem. A 2016, 4, 3471. [80] S. Sanchez, X. Hua, N. Phung, U. Steiner, A. Abate, 'Flash Infrared Annealing for Antisolvent-Free Highly Efficient Perovskite Solar Cells', Adv. Energy Mater. 2018, 8, 1702915. [81] S. Sánchez, M. Vallés-Pelarda, J.-A. Alberola-Borràs, R. Vidal, J. J. Jerónimo-Rendón, M. Saliba, P. P. Boix, I. Mora-Seró, 'Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells', Mater. Today 2019, 31, 39. [82] D. Burkitt, J. Searle, T. Watson, 'Perovskite solar cells in N-I-P structure with four slot-die-coated layers', Royal Society Open Science 2018, 5, 172158. [83] C. Kamaraki, A. Zachariadis, C. Kapnopoulos, E. Mekeridis, C. Gravalidis, A. Laskarakis, S. Logothetidis, 'Efficient flexible printed perovskite solar cells based on lead acetate precursor', Sol. Energy 2018, 176, 406. [84] Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs, H. Chen, 'Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates', J. Mater. Chem. A 2015, 3, 24254. [85] J. Ciro, M. A. Mejía-Escobar, F. Jaramillo, 'Slot-die processing of flexible perovskite solar cells in ambient conditions', Sol. Energy 2017, 150, 570. [86] NREL, 2020, https://www.nrel.gov/pv/module. [87] M.-H. Jao, C.-C. Cheng, C.-F. Lu, K.-C. Hsiao, W.-F. Su, 'Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy', J. Mater. Chem. C 2018, 6, 9941. [88] J. G. Tait, T. Merckx, W. Li, C. Wong, R. Gehlhaar, D. Cheyns, M. Turbiez, P. Heremans, 'Determination of Solvent Systems for Blade Coating Thin Film Photovoltaics', Adv. Funct. Mater. 2015, 25, 3393. [89] C. M. Hansen, 'The three dimensional solubility parameter', Danish Technical: Copenhagen 1967, 14. [90] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, 'Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties', Inorg. Chem. 2013, 52, 9019. [91] B. J. Foley, J. Girard, B. A. Sorenson, A. Z. Chen, J. Scott Niezgoda, M. R. Alpert, A. F. Harper, D.-M. Smilgies, P. Clancy, W. A. Saidi, J. J. Choi, 'Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives', J. Mater. Chem. A 2017, 5, 113. [92] N. Cho, F. Li, B. Turedi, L. Sinatra, S. P. Sarmah, M. R. Parida, M. I. Saidaminov, B. Murali, V. M. Burlakov, A. Goriely, O. F. Mohammed, T. Wu, O. M. Bakr, 'Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films', Nat. Commun. 2016, 7, 13407. [93] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, 'Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell', ACS Appl. Mater. Interfaces 2015, 7, 4955. [94] C.-Y. Chang, C.-P. Wang, R. Raja, L. Wang, C.-S. Tsao, W.-F. Su, 'High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism', J. Mater. Chem. A 2018, 6, 4179. [95] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, 'Efficient and stable solution-processed planar perovskite solar cells via contact passivation', Sci. 2017, 355, 722. [96] N. E. Courtier, J. M. Cave, J. M. Foster, A. B. Walker, G. Richardson, 'How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model', Energy Environ. Sci. 2019, 12, 396. [97] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N. G. Park, 'Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide', J. Am. Chem. Soc. 2015, 137, 8696. [98] X. Guo, C. McCleese, C. Kolodziej, A. C. S. Samia, Y. Zhao, C. Burda, 'Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite', Dalton Trans. 2016, 45, 3806. [99] H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, S. V. Kershaw, L. Zhang, A. L. Rogach, X. Yang, 'Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices', Nat. Commun. 2019, 10, 665. [100] S.-H. Huang, K.-Y. Tian, H.-C. Huang, C.-F. Li, W.-C. Chu, K.-M. Lee, Y.-C. Huang, W.-F. Su, 'Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment', ACS Appl. Mater. Interfaces 2020, 12, 26041. [101] R. A. Kerner, T. H. Schloemer, P. Schulz, J. J. Berry, J. Schwartz, A. Sellinger, B. P. Rand, 'Amine additive reactions induced by the soft Lewis acidity of Pb2+ in halide perovskites. Part I: evidence for Pb–alkylamide formation', J. Mater. Chem. C 2019, 7, 5251. [102] Y. Galagan, 'Stability of perovskite PV modules', Journal of Physics: Energy 2020, 2, 021004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21509 | - |
| dc.description.abstract | 由於鈣鈦礦太陽能電池能以低成本的溶液製程製備,對於量產商業化有顯著的潛力。目前高效率的鈣鈦礦太陽能電池中,製備方法通常為旋轉塗佈法且多為小面積的電池。刮刀塗佈法為一項非常簡易可以製備大面積均勻薄膜的技術,目前刮刀塗佈法製備之鈣鈦礦電池中,仍使用有致癌性的二甲基甲醯胺(DMF)來配置鈣鈦礦前驅物溶液並於氮氣下沉積薄膜,這些不利於工業上的安全及成本考量。本研究利用Hansen溶解度常數(Hansen solubility parameters)及施體數(donor number)選擇適合鈣鈦礦前驅物的溶劑,且能以無毒的γ-丁內酯(GBL)及二甲基亞碸(DMSO)的混合溶劑配置鈣鈦礦前驅物溶液,於大氣下以刮刀塗佈法製備鈣鈦礦薄膜,將此薄膜製成高效率的鈣鈦礦太陽能電池,透過改變溶劑比例及加入添加劑來控制薄膜的表面形貌、界面及結晶度。此結果能以適合量產的塗佈技術製備且解決溶劑毒性問題。 為了製備更大面積的薄膜,使用狹縫式塗佈法並結合近紅外光加熱技術在大氣中快速製備鈣鈦礦太陽能電池。在鈣鈦礦前驅物溶液中加入正丁醇,同時降低溶液的表面張力及增加近紅外光波長的吸收度,因此加速溶液的揮發速度與成膜速度,並使鈣鈦礦快速結晶,不需要額外的熱處理,能在18秒內製備出12公分×12公分的高品質且均勻雙陽離子鈣鈦礦薄膜,此薄膜製備成電池,最高效率能達到15.53%。此外,展示除了電極外其他層皆以全狹縫式塗佈法於大氣下製備鈣鈦礦太陽能電池的四層均勻薄膜,此製程及加熱技術結合能有效減少製程時間及跳過熱處理步驟,對於量產製程有更進一步的發展。 為了製備大面積太陽能電池,模組化的圖案所建立的內部串聯結構則極為重要,我們透過控制活性區寬度來減少來自雷射切割熱殘留所造成的電阻損耗,並能製備出面積為1平方公分及5平方公分電池,其效率表現分別能保有小面積電池效率的98%及88%,能有效減少面積放大造成的效率損耗,對於大面積模組製備有明顯的幫助。進而運用於狹縫式塗佈法沉積每一層,利用雙面加熱技術來減少溫度梯度的產生及薄膜收縮的現象,得到全覆蓋的均勻鈣鈦礦薄膜。最終結合以上結果,我們能製備出46平方公分之大面積全狹縫式塗佈製備之鈣鈦礦模組,最高效率約為7.19%,此研究成果展示出鈣鈦礦太陽能電池發展的高度商業化潛力,進而加速未來鈣鈦礦產業的發展。 | zh_TW |
| dc.description.abstract | Low-cost and solution-processed perovskite solar cells have shown great potential in scaling-up for mass production. Compared with the spin-coating process of fabricating devices with the small area, the scalable process is a facile technique of preparing large-area films. High-efficiency perovskite solar cells have been reported using scalable coating, but they were fabricated using the toxic solvent of N,N-dimethylformide (DMF) in nitrogen. Here, we use the Hansen solubility parameters and donor number to select the suitable solvents to prepare of the perovskite precursor solution. Then, highly efficient blade-coated perovskite solar cells were prepared using a green solvent mixture of gamma-butyrolactone (GBL) and dimethyl sulfoxide (DMSO) in an ambient environment. By carefully controlling the interface, morphology, and crystalline of perovskite film through composition variations and additive. The findings in this work resolve scalability and solvent toxicity; thus, perovskite solar cells’ mass production becomes feasible. Furthermore, we use the slot-die coating is combined with near-infrared irradiation heating to manufacture perovskite solar cells in the air quickly. The solvent composition of the perovskite precursor solution is tuned by adding n-butanol of low boiling point and low surface tension to increase fthe near-infrared energy absorption and facilitate the evaporation of solvent system and film formation. The high-quality uniform perovskite film can be prepared within 18s. The highest PCE of dual-cation PSCs prepared using this uniform film can be achieved by 15.53%. Moreover, the all slot-die coating process is demonstrated to prepare four layers of uniform film overlay on top of each other for the devices except electrode in ambient air. This simple process can significantly reduce the cost, time and bypass post-annealing to fabricate high-efficiency large-area perovskite solar cells in ambient air. We tune the sub-cell width to improve the resistance loss from the heat accumulation of laser ablation. Finally, we fabricate modules with two kinds of the active area of 5 cm2 and 1 cm2. The PCE of modules can be maintained as 98% and 88%, respectively, compared with that of 0.09 cm2 cell. The results are promising to fabricate the large-area module. For large-area coating on scribed FTO substrate, we apply a hot-plate-assisting of 60oC to reduce the film shrinkage during NIR heating. The full coverage of perovskite film can be obtained. Finally, the large-area all slot-die coated perovskite module is demonstrated with an active area of 46 cm2. The highest PCE of a large-area module can be achieved by 7.19%. These results can promote the development of perovskite solar cells and achieve commercialization potential soon. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:36:15Z (GMT). No. of bitstreams: 1 U0001-2003202122372000.pdf: 6283140 bytes, checksum: 66dd2236f522ed77bea20f77fc998c66 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT iv CONTENTS vi List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Renewable Energy 1 1.2 Technical progress of solar cell 1 1.3 Perovskite solar cell 6 1.4 Toward commercialization for perovskite solar cells 7 1.4.1 Effect of atmosphere on the fabrication of perovskite solar cell 7 1.4.2 Toxicity of solvents for precursor solutions 8 1.4.3 Scalable processes 11 1.4.4 Morphology and crystallization of film made by scalable process 14 1.5 Motivation 18 1.6 Objective 18 1.6.1 Preparation of perovskite precursor solutions using non-toxic solvents for scalable process 18 1.6.2 PSCs fabricated from blade-coated perovskite film using non-toxic solvents in ambient condition 21 1.6.3 Slot-die coated PSCs by using near-infrared irradiation 22 1.6.4 All slot-die coated PSCs 22 1.6.5 Large-area perovskite solar module 24 Chapter 2 Experimental Section 26 2.1 Chemicals 26 2.2 Material synthesis and solution preparation 28 2.2.1 Preparation of sol-gel NiOX precursor solution 28 2.2.2 Preparation of sol-gel TMAOH-assisted NiOX precursor solution 28 2.2.3 Preparation of NP-NiOX solution 28 2.2.4 Preparation of P3HT-COOH solution 29 2.2.5 Preparation of perovskite precursor solution 29 2.2.6 Preparation of PCBM solution 29 2.2.7 Preparation of PEI solution 30 2.2.8 Preparation of TBAOH solution 30 2.3 Device fabrication 31 2.3.1 Perovskite solar cell fabricated by spin coating and anti-solvent for control 31 2.3.2 Perovskite solar cell fabricated by blade coating 31 2.3.3 Perovskite solar cell fabricated by slot-die coating and hot plate heating 32 2.3.4 Perovskite solar cell fabricated by slot-die coating and near-infrared (NIR) heating 33 2.3.5 All slot-die coated perovskite solar cell fabricated by NIR heating 34 2.3.6 Fabrication of NP-NiOX film and P3HT-COOH film 35 2.3.7 Module fabrication 35 2.4 Instrument used for material characterization and device fabrication 36 Chapter 3 Results and discussion 38 3.1 Solutions prepared using green solvents for scalable process 38 3.2 Blade-coated PSCs using non-toxic solvents in ambient 44 3.3 Highly uniform large-area slot-die coated PSCs 64 3.3.1 Implantation of process parameters from blade coating to slot-die coating 64 3.3.2 Heat transfer of solvent and substrate 69 3.3.3 Slot-die coated PSCs fabricated by using NIR irradiation 72 3.3.4 All slot-die coated PSCs 98 3.4 Large-area perovskite solar module 101 3.4.1 Optimization of module pattern 101 3.4.2 Edge effect of slot-die coated film fabricated by NIR heating 104 3.4.3 All slot-die coated perovskite module 106 Chapter 4 Conclusions 108 Chapter 5 Recommendations 110 5.1 Film deposition covers the gap of scribed region 110 5.2 Incomplete laser ablation for HTL 111 5.3 Energy alignment of dual-cation perovskite with charge-transporting layers 113 References 114 APPENDIX(I) Curriculum Vitae 122 | |
| dc.language.iso | en | |
| dc.title | 使用可量產配方及快速製程於大氣下製備高效率大面積鈣鈦礦太陽能電池 | zh_TW |
| dc.title | Fabrication of High-Efficiency Large-Area Perovskite Solar Cell Using Scalable Liquid Formulations and Rapid Process in Ambient | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 佳莉亞(Yulia Galagan) | |
| dc.contributor.oralexamcommittee | 蔡豐羽(Feng-Yu Tsai),陳貞夙(Jen-Sue Chen),黃裕清(Yu-Ching Huang) | |
| dc.subject.keyword | 大面積,快速加熱技術,工業適用溶液配方,鈣鈦礦太陽能電池,鈣鈦礦模組,近紅外光加熱法,狹縫式塗佈法,刮刀塗佈法,可量產, | zh_TW |
| dc.subject.keyword | large-area,rapid thermal annealing,industrial-compatible,perovskite solar cell,module,NIR heating,slot-die coating,blade coating,scalable, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU202100795 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-03-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2003202122372000.pdf Restricted Access | 6.14 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
