Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorYu-Heng Houngen
dc.contributor.author洪御恆zh_TW
dc.date.accessioned2021-06-08T03:36:09Z-
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-26
dc.identifier.citationBollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3)1–27.
https://github.com/ldkrsi/jieba-zh_TW
Radinsky, K., Davidovich, S., & Markovitch, S. (2012, April). Learning causality for news events prediction. In Proceedings of the 21st International Conference on World Wide Web, 909–918. Association for Computing Machinery.
Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and documents. In Proceedings of the International Conference on Machine Learning, 1188–1196.
Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), 61–74.
Qian, B., & Rasheed, K. (2007). Stock market prediction with multiple classifiers. Applied Intelligence, 26(1), 25–33.
Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., & Smith, N. A. (2009, May). Predicting risk from financial reports with regression. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 272–280. Association for Computational Linguistics.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Proceedings of Twenty-Fourth International Joint Conference on Artificial Intelligence, 2327–2333.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014). Using structured events to predict stock price movement: An empirical investigation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1415–1425.
Peng, Y., & Jiang, H. (2015). Leverage financial news to predict stock price movements using word embeddings and deep neural networks. arXiv preprint arXiv:1506.07220.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21506-
dc.description.abstract本論文主要討論以新聞標題作為依據預測股價的漲跌方向,對於以消息面來做為依據的投資策略,新聞是很重要的一個消息來源,於是我們嘗試利用自然語言處理領域中有名的Doc2vec將新聞標題以向量的方式解讀,一個以神經網路與機率作為基本架構的模型來表示新聞標題,再使用經典機器學習模型預測特定股價的漲跌,預測準確率最高可達70%,以期望用於輔助投資策略的決策。zh_TW
dc.description.abstractThis thesis mainly discusses how to use news headlines as features to predict stock price directions. It is well-known that some investors believe in news analysis strategy, which is highly depending on the news. Thus we will use the popular method Doc2vec, which uses vectors to represent words based on neural networks and probability, to represent each headline as a vector. Then we use the classical machine learning model to predict individual stock price directions. Our method best perform 70% accuracy for stock price directions prediction and expect to help investors making
the right strategy.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:36:09Z (GMT). No. of bitstreams: 1
ntu-108-R06922122-1.pdf: 1213243 bytes, checksum: b3c6beb1e9ff7e269b555b5b043064a2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 實驗動機...........................1
1.2 論文架構...........................1
第二章 背景 5
2.1 文獻回顧..........................5
2.2 使用模型..........................6
2.2.1 Logistic Regression....................6
2.2.2 SVM..........................6
2.2.3 AdaBoost........................7
2.3 Document to Vector......................8
第三章 實驗 11
3.1 資料與預先處理........................11
3.1.1 特徵處理........................11
3.1.2 標籤處理........................11
3.2 結果..........................12
第四章 結論 17
文獻回顧 19
dc.language.isozh-TW
dc.title利用機率模型與機器學習,向量表示詞語並預測股價方向zh_TW
dc.titleUsing Probability Models and Machine Learning to Represent Words in the Prediction of Stock Price Directionsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張經略(Ching-Lueh Chang),金國興(Guo-Xing Jin),陸裕豪(U-Hou Lok)
dc.subject.keyword漲跌預測,股價,自然語言,機器學習,新聞,zh_TW
dc.subject.keywordPrediction in the Price Directions,Stock Price,Nature Language,Machine Learning,News,en
dc.relation.page20
dc.identifier.doi10.6342/NTU201901597
dc.rights.note未授權
dc.date.accepted2019-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved