Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21478
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰(Minn-Tsong Lin)
dc.contributor.authorSheng-Yueh Wengen
dc.contributor.author翁聖岳zh_TW
dc.date.accessioned2021-06-08T03:35:15Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation[1] Devkota, J., Geng, R., Subedi, R. C., & Nguyen, T. D. (2016), Organic spin valves: a review. Advanced Functional Materials, 26(22), 3881-3898
[2] Watanabe, S., Ando, K., Kang, K., Mooser, S., Vaynzof, Y., Kurebayashi, H., Saitoh, E. and Sirringhaus, H. (2014), Polaron spin current transport in organic semiconductors. Nature Physics, 10(4), 308.
[3] Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., Harii, K., Fujikawa, Y., Matsuo, M., Maekawa, S. and Saitoh, E. (2011), Inverse spin-Hall effect induced by spin pumping in metallic system. Journal of applied physics, 109(10), 103913.
[4] Mosendz, O., Pearson, J. E., Fradin, F. Y., Bauer, G. E. W., Bader, S. D., & Hoffmann, A. (2010), Quantifying spin Hall angles from spin pumping: Experiments and theory. Physical review letters, 104(4), 046601.
[5] Tserkovnyak, Y., Brataas, A., & Bauer, G. E. (2002), Spin pumping and magnetization dynamics in metallic multilayers. Physical Review B, 66(22), 224403.
[6] Miyazaki, T., & Jin, H. (2012). The physics of ferromagnetism (Vol. 158). Springer Science & Business Media.
[7] Xu, Y., Awschalom, D. D., & Nitta, J. (2016). Handbook of spintronics, Springer Publishing Company, Incorporated.
[8] Brütting, W., & Adachi, C. (2013). Physics of Organic Semiconductors.
[9] Sato, K., Saitoh, E., Willoughby, A., Capper, P., & Kasap, S. (2015) Spintronics for Next Generation Innovative Devices. John Wiley & Sons.
[10] Feng, Z., Hu, J., Sun, L., You, B.,Wu, D., Du, J., Zhang, W., Hu, A., Yang, Y., Tang, D. M., Zhang, B. S. & Ding, H. F. (2012) Spin Hall angle quantification from spin pumping and microwave photoresistance. Physical Review B, 85(21).
[11] Zhang, Q. H., Fan, X. L., Zhou, H. A., Kong, W. W., Zhou, S. M., Gui, Y. S., Hu, C. M. & Xue, D. S. (2018). Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics. Applied Physics Letters, 112(9), 092406.
[12] Tsukahara, A., Ando, Y., Kitamura, Y., Emoto, H., Shikoh, E., Delmo, M. P., Shinjo, T. & Shiraishi, M. (2014). Self-induced inverse spin Hall effect in permalloy at room temperature. Physical Review B, 89(23), 235317.
[13] Mendes, J. B. S., Santos, O. A., Gomes, J. P., Assis, H. S., Felix, J. F., Rodriguez-Suarez, R. L., Rezende, S. M. & Azevedo, A. (2017). Efficient spin transport through polyaniline. Physical Review B, 95(1), 014413.
[14] Guan, Y., Bailey, W. E., Vescovo, E., Kao, C. C., & Arena, D. A. (2007). Phase and amplitude of element-specific moment precession in. Journal of Magnetism and Magnetic Materials, 312(2), 374-378.
[15] Counil, G., Devolder, T., Kim, J. V., Crozat, P., Chappert, C., Zoll, S., & Fournel, R. (2006). Temperature Dependences of the Resistivity and the Ferromagnetic Resonance Linewidth in Permalloy Thin Films. IEEE Transactions on Magnetics, 42(10), 3323-3325.
[16] Jiang, S. W., Liu, S., Wang, P., Luan, Z. Z., Tao, X. D., Ding, H. F., & Wu, D. (2015). Exchange-Dominated Pure Spin Current Transport in Alq(3) Molecules. Physical Review Letters, 115(8), 086601.
[17] Tani, Y., Teki, Y., & Shikoh, E. (2015). Spin-pump-induced spin transport in a thermally evaporated pentacene film. Applied Physics Letters, 107(24), 242406.
[18] Michael, Schreier, Gerrit, E. W. Bauer, Vitaliy, I. Vasyuchka, Joost, Flipse, Ken-ichi, Uchida, Johannes, Lotze, Viktor, Lauer, Andrii, V. Chumak, Alexander, A. Serga, Shunsuke, Daimon, Takashi, Kikkawa, Eiji, Saitoh, Bart, J. van Wees, Burkard, Hillebrands, Rudolf, Gross & Sebastian, T. B. Goennenwein
(2015). Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers. Journal of Physics D: Applied Physics, 48(2), 025001.
[19] Gilbert, T. L. (2004). A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 40(6), 3443-3449.
[20] Lindner, J., Barsukov, I., Raeder, C., Hassel, C., Posth, O., Meckenstock, R., Landeros, P. & Mills, D. L. (2009). Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Physical Review B, 80(22), 224421.
[21] Mizukami, S., Ando, Y., & Miyazaki, T. (2002). Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Physical Review B, 66(10), 104413.
[22] Mizukami, S., Ando, Y., & Miyazaki, T. (2001). The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM= Cu, Ta, Pd and Pt) films. Japanese journal of applied physics, 40(2R), 580.
[23] Hong, J. Y., Yang, K. H. O., Wang, B. Y., Li, K. S., Shiu, H. W., Chen, C. H., Chan, Y. L., Wei, D. H., Chang, F. H., Lin, H. J., Chiang, W. C. & Lin, M. T. (2014). Interfacial spectroscopic characterization of organic/ferromagnet hetero-junction of 3,4,9,10-perylene-teracarboxylic dianhydride-based organic spin valves. Applied Physics Letters, 104(8), 083301.
[24] Li, K. S., Chang, Y. M., Agilan, S., Hong, J. Y., Tai, J. C., Chiang, W. C., Fukutani, K., Dowben, P. A. & Lin, M. T. (2011). Organic spin valves with inelastic tunneling characteristics. Physical Review B, 83(17), 172404.
[25] Shim, J. H., Raman, K. V., Park, Y. J., Santos, T. S., Miao, G. X., Satpati, B., & Moodera, J. S. (2008). Large spin diffusion length in an amorphous organic semiconductor. Phys Rev Lett, 100(22), 226603.
[26] Durr, A. C., Schreiber, F., Kelsch, M., Carstanjen, H. D., & Dosch, H. (2002). Morphology and thermal stability of metal contacts on crystalline organic thin films. Advanced Materials, 14(1314), 961-963.
[27] Hill, I. G., Milliron, D., Schwartz, J., & Kahn, A. (2000). Organic semiconductor interfaces: electronic structure and transport properties. Applied Surface Science, 166(1-4), 354-362.
[28] Gordan, O. D., Hermann, S., Friedrich, M., & Zahn, D. R. T. (2005). Optical Properties of 3, 4, 9, 10-perylenetetracarboxylic dianhydride/copper phthalocyanine superlattices. Journal of applied physics, 97(6), 063518.
[29] Picozzi, S., Pecchia, A., Gheorghe, M., Di Carlo, A., Lugli, P., Delley, B., & Elstner, M. (2003). Schottky Barrier Height at Organic/Metal Junctions from First-Principles. Journal of Computational Electronics, 2(2-4), 407-411.
[30] Levin, A. A., Leisegang, T., Forker, R., Koch, M., Meyer, D. C., & Fritz, T. (2010). Preparation and crystallographic characterization of crystalline modifications of 3,4:9,10-perylenetetracarboxylic dianhydride at room temperature. Crystal Research and Technology, 45(4), 439-448.
[31] Ferguson, A. J., & Jones, T. S. (2006). Photophysics of PTCDA and Me-PTCDI Thin Films: Effects of Growth Temperature. The Journal of Physical Chemistry B, 110(13), 6891-6898.
[32] Forrest, S. R., Burrows, P. E., Haskal, E. I., & So, F. F. (1994). Ultrahighvacuum quasiepitaxial growth of model van der Waals thin films. II. Experiment. Physical Review B, 49(16), 11309{11321.
[33] Djurisic, A. B., Kwong, C. Y., Guo, W. L., Liu, Z. T., Kwok, H. S., & Chan, W. K. (2003). Spectroscopic ellipsometry of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Applied Physics A, 77(5), 649{653.
[34] Hirose, Y., Kahn, A., Aristov, V., Soukiassian, P., Bulovic, V., & Forrest, S. R. (1996). Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Physical Review B, 54(19), 13748{13758.
[35] Chen, Y.-T., Takahashi, S., Nakayama, H., Althammer, M., Goennenwein, S. T. B., Saitoh, E., & Bauer, G. E. W. (2013). Theory of spin Hall magnetoresistance. Physical Review B, 87(14), 144411.
[36] Guo, E. J., Cramer, J., Kehlberger, A., Ferguson, C. A., MacLaren, D. A., Jakob, G., & Klaui, M. (2016). Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films. Physical Review X, 6(3), 031012.
[37] Uchida, K., Ishida, M., Kikkawa, T., Kirihara, A., Murakami, T., & Saitoh, E. (2014). Erratum: Longitudinal spin Seebeck effect: from fundamentals to applications. Journal of Physics: Condensed Matter, 26(38), 389601.
[38] Wu, P.-H., & Huang, S.-Y. (2016). Noncollinear magnetization between surface and bulkY3Fe5O12. Physical Review B, 94(2), 024405.
[39] Uchida, K., Ota, T., Adachi, H., Xiao, J., Nonaka, T., Kajiwara, Y., Bauer, G. E. W., Maekawa, S. & Saitoh, E. (2012). Thermal spin pumping and magnonphonon-mediated spin-Seebeck effect. Journal of Applied Physics, 111(10), 103903.
[40] Schreier, M., Kamra, A., Weiler, M., Xiao, J., Bauer, G. E. W., Gross, R., & Goennenwein, S. T. B. (2013). Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Physical Review B, 88(9), 094410.
[41] Rezende, S. M., Rodriguez-Suarez, R. L., Cunha, R. O., Ortiz, J. C. L., & Azevedo, A. (2016). Bulk magnon spin current theory for the longitudinal spin Seebeck effect. Journal of Magnetism and Magnetic Materials, 400, 171-177.
[42] Uchida, K.-i., Ohe, J.-i., Kikkawa, T., Daimon, S., Hou, D., Qiu, Z., & Saitoh, E. (2015). Intrinsic surface magnetic anisotropy in Y 3 Fe 5 O 12 as the origin of low-magnetic-_eld behavior of the spin Seebeck effect. Physical Review B, 92(1), 014415.
[43] Uchida, K., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., & Saitoh, E. (2011). Electric detection of the spin-Seebeck effect in magnetic insulator in the presence of interface barrier. Journal of Physics: Conference Series, 303(1), 012096.
[44] Qiu, Z., Hou, D., Uchida, K., & Saitoh, E. (2015). Influence of interface condition on spin-Seebeck effects. Journal of Physics D: Applied Physics, 48(16), 164013.
[45] Adachi, H., & Maekawa, S. (2013). Linear-response theory of the longitudinal spin Seebeck effect. Journal of the Korean Physical Society, 62(12), 1753-1758.
[46] Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G. E., Maekawa, S. & Saitoh, E. (2010). Spin Seebeck insulator. Nat Mater, 9(11), 894-897.
[47] Uchida, K., Adachi, H., Ota, T., Nakayama, H., Maekawa, S., & Saitoh, E. (2010). Observation of longitudinal spin-Seebeck effect in magnetic insulators. Applied Physics Letters, 97(17), 172505.
[48] Hiroto, A., Ken-ichi, U., Eiji, S., & Sadamichi, M. (2013). Theory of the spin Seebeck effect. Reports on Progress in Physics, 76(3), 036501.
[49] Xu, Y., Ephron, D., & Beasley, M. R. (1995). Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions. Physical Review B, 52(4), 2843-2859.
[50] Yu, Z. G. (2012). Spin-orbit coupling and its effects in organic solids. Physical Review B, 85(11), 115201.
[51] Mott, N. F. (1967). Electrons in disordered structures. Advances in Physics, 16(61), 49-144.
[52] Yu, Z. G., Ding, F., & Wang, H. (2013). Hyperfine interaction and its effects on spin dynamics in organic solids. Physical Review B, 87(20), 205446.
[53] Koopmans, B. (2014). Organic Spintronics: Pumping spins through polymers. Nature Physics, 10(4), 249-250.
[54] Tian, Y., Ye, L., & Jin, X. (2009). Proper scaling of the anomalous Hall effect. Phys Rev Lett, 103(8), 087206.
[55] Julliere, M. (1975). Tunneling between ferromagnetic films. Physics letters A, 54(3), 225-226.
[56] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
[57] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. Nguyen, Petro_, F., Etienne, P., Creuzet, G., Friederich, A. & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
[58] Shankar, R. (2012). Principles of quantum mechanics. Springer Science & Business Media.
[59] Takahashi, S., & Maekawa, S. (2008). Spin current in metals and superconductors. Journal of the Physical Society of Japan, 77(3), 031009-031009.
[60] Robert, C. O., & Handley, O. (2000). Modern magnetic materials: principles and applications. Ed. John Wiley & Sons, Inc., New York.
[61] Kittel, C., McEuen, P., & McEuen, P. (1976). Introduction to solid state physics (Vol. 8). New York: Wiley.
[62] Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392(1802), 45-57.
[63] Smit, J. (1955). The spontaneous Hall effect in ferromagnetics I. Physica, 21(6-10), 877-887.
[64] Smit, J. (1958). The spontaneous Hall effect in ferromagnetics II. Physica, 24(1-5), 39-51.
[65] Berger, L. (1970). Side-jump mechanism for the Hall effect of ferromagnets. Physical Review B, 2(11), 4559.
[66] Landau, L. D., & Lifshitz, E. (1935). On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet., 8, 153.
[67] Slonczewski, J. C. (1996). Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2), L1-L7.
[68] Ando, K., & Saitoh, E. (2012). Observation of the inverse spin Hall effect in silicon. Nature Communications, 3, 629.
[69] Weber, R. T., Jiang, J., & Barr, D. P. (1998). EMX user's manual. Bruker Instruments, Billerica.
[70] Ando, K., Takahashi, S., Ieda, J., Kurebayashi, H., Trypiniotis, T., Barnes, C. H., Maekawa, S. & Saitoh, E. (2011). Electrically tunable spin injector free from the impedance mismatch problem. Nat Mater, 10(9), 655-659.
[71] Albrecht, J. D., & Smith, D. L. (2002). Electron spin injection at a Schottky contact. Physical Review B, 66(11).
[72] Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T., & van Wees, B. J. (2000). Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a di_usive semiconductor. Physical Review B, 62(8), R4790-R4793.
[73] Ellsworth, David, Lu, Lei, Lan, Jin, Chang, Houchen, Li, Peng, Wang, Zhe, Hu, Jun, Johnson, Bryan, Bian, Yuqi, Xiao, Jiang, Wu, Ruqian & Wu, Mingzhong (2016). Photo-spin-voltaic effect. Nature Physics, 12(9), 861-866.
[74] Ounadjela, K., Lefakis, H., Speriosu, V. S., Hwang, C., & Alexopoulos, P. S. (1988). Thickness dependence of magnetization and magnetostriction of NiFe and NiFeRh films. Le Journal de Physique Colloques, 49(C8), C8-1709.
[75] Lloyd, J. C., & Smith, R. S. (1959). Structural and magnetic properties of Permalloy films. Journal of Applied Physics, 30(4), S274-S275.
[76] ezende, S. M., Rodriguez-Suarez, R. L., Cunha, R. O., Ortiz, J. C. L., & Azevedo, A. (2016). Bulk magnon spin current theory for the longitudinal spin Seebeck effect. Journal of Magnetism and Magnetic Materials, 400, 171-177.
[77] Hiroto, A., Ken-ichi, U., Eiji, S., & Sadamichi, M. (2013). Theory of the spin Seebeck effect. Reports on Progress in Physics, 76(3), 036501.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21478-
dc.description.abstract在自旋電子學中,自旋在儲存設備的控制以及偵測資訊中扮演著很重要的角色。利用導電電子以及磁子傳輸的純自旋流在金屬以及非有機材料中被廣泛地研究,但在因其弱自旋軌道耦合 (spin-orbit coupling) 而被預測有長自旋擴散長度 (spin diffusion length) 和自旋鬆弛時間 (spin relaxation time) 的有機材料中卻還沒被研究透徹。在π共軛有機半導體 (π-conjugated organic semiconductor) 中,電荷載子是藉由跳躍傳導 (hopping transport) 的但是自旋傳輸性質卻還尚未清楚。在這系列的實驗中,我們用自旋幫浦 (spin pumping effect) 和自旋賽貝克效應 (spin Seebeck effect) 這兩種機制來產生純自旋流 (pure spin current) ,並將其注入至π共軛有機半導體苝四甲酸二酐 (PTCDA) 中展示其中的自旋傳輸現象。藉由比較這兩種自旋注入實驗,我們發現其自旋流穿透深度的不同,並認為純自旋流的產生機制還有自旋流來源和能障間的介面是十分重要的。變溫自旋賽貝克效應實驗暗示孔洞效應似乎在能障太薄的時候會產生巨大的影響,但當其足夠厚實自旋流則可以流入能障苝四甲酸二酐。zh_TW
dc.description.abstractIn spintronics, spin transport plays an important role in controlling and detecting information in storage devices. Pure spin current, carried by conduction electrons or magnons, have been investigated in a wide range of metals and inorganic semiconductors but rarely in organic materials, which have been predicted to have the long spin diffusion length and spin relaxation time due to its low spin-orbit coupling which is caused by low atomic number of composing atoms.
It has been reasoned that charge carriers in π-conjugated organic semiconductor transport by hopping but the spin transport property is not clear yet. Here we used two kinds of sources, spin pumping and the spin Seebeck effect, to inject pure spin currents into π-conjugated organic semiconductors PTCDA and demonstrate the spin transport inside. By comparing these two kinds of spin injections, we conclude that the generation mechanisms of pure spin current and the interface between source and barrier are both important since the resulting penetration lengths of spin current are different between the two methods. Temperature-dependent spin Seebeck effect measurements have also been performed and imply the pinhole issue would cause a serious impact if the thickness of PTCDA is excessively thin but spin current would flow through organic materials when PTCDA is thick enough.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:35:15Z (GMT). No. of bitstreams: 1
ntu-108-R04245016-1.pdf: 10075833 bytes, checksum: 609dee001c0185f3779c69822e7190be (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAbstract iii
Declaration iv
Acknowledgements v
1 Introduction 1
2 Fundamentals 3
2.1 Spin Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Spin Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Ferromagnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Landau-Lifshitz-Gilbert equation . . . . . . . . . . . . . . . . 8
2.4 Spin Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Longitudinal Spin Seebeck Effect . . . . . . . . . . . . . . . . . . . . 15
3 Apparatus 17
3.1 Physical Vapor Deposition System . . . . . . . . . . . . . . . . . . . 17
3.1.1 Multi-Target Magnetron Co-Sputtering System . . . . . . . . 20
3.1.2 Thermal Evaporation Chamber . . . . . . . . . . . . . . . . . 21
3.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Electron Paramagnetic Resonance System . . . . . . . . . . . 22
3.2.2 Spin Seebeck Effect . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Spin Current Injection 25
4.1 Spin Pumping in Pt/ PTCDA/ Py systems . . . . . . . . . . . . . . . 25
4.1.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Signal Analyzation . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Power-Dependent Measurements . . . . . . . . . . . . . . . . . 28
4.1.4 Angular Dependent Measurements . . . . . . . . . . . . . . . 29
4.1.5 Thickness-Dependent Measurements . . . . . . . . . . . . . . 31
4.2 Spin Seebeck Effect in YIG/ PTCDA/ Pt Systems . . . . . . . . . . . 34
4.2.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Experimental Data of the SSE Measurements . . . . . . . . . 35
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Conclusions 42
Appendix 44
A Coplanar Waveguide 44
Bibliography 47
dc.language.isoen
dc.title藉由自旋幫浦效應和自旋賽貝克效應研究在有機半導體苝四甲酸二酐中的自旋注入以及傳輸性質zh_TW
dc.titleInvestigate Spin Injection and Transport Properties in Organic Semiconductor PTCDA by Spin Pumping and Spin Seebeck Effecten
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林秀豪(Hsiu-Hau Lin),黃斯衍(Ssu-Yen Huang),江文中(Wen-Chung Chiang),張景皓(Ching-Hao Chang)
dc.subject.keyword自旋幫浦,自旋賽貝克效應,共軛有機半導體,?四甲酸二酐,自旋注入,自旋傳輸,zh_TW
dc.subject.keywordSpin pumping,spin Seebeck effect,π-conjugated organic semiconductor,PTCDA,spin injection,spin transport,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201902001
dc.rights.note未授權
dc.date.accepted2019-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
9.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved