請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(Jian-Jang Huang) | |
| dc.contributor.author | Yung-Tsan Chen | en |
| dc.contributor.author | 陳永璨 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:35:12Z | - |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-25 | |
| dc.identifier.citation | [1] A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors”, Journal of Physics D: Applied Physics 50, 203001-203016 (2017). [2] H. Xu, P. Wu, C. Zhu, A. Elbaza, and Z. Z. Gu, “Photonic crystal for gas sensing”, Journal of Materials Chemistry C 1, 6087-6098 (2013). [3] T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor”, Applied Physics Letters 92, 261112 (2008). [4] C. Caër, S. F. Serna-Otálvaro, W. Zhang, X. L. Roux, and E. Cassan, “Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration”, Optics Letters 39, 5792-5794 (2014). [5] Y. Huang, G. Pandraud, and P. M. Sarro, “Reflectance-based two-dimensional TiO2 photonic crystal liquid sensors”, Optics Letters 37, 3162-3164 (2012). [6] Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, Jr., and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor”, Analytical Chemistry 82, 5211-5218 (2010). [7] J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing”, Lab on a Chip 15, 971-990 (2014). [8] M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection”, Optics Express 15, 4530-4535 (2007). [9] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Optics Letters 29, 1093-1095 (2004). [10] Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs”, Sensors 17, 1861-1872 (2017). [11] D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on‐chip integration”, Journal of Biophotonics 5, 601-616 (2012). [12] G. Ye and X. Wang, “Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups”, Biosensors and Bioelectronics 26, 772-777 (2010). [13] M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection”, Optics Letters 32, 3284-3286 (2007). [14] A. A. Siraji and Y. Zhao, “High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors”, Optics Letters 40, 1508-1511 (2015). [15] S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors”, Analyst 136, 1090-1102 (2011). [16] S. Jahns, M. Bräu, B. O. Meyer, T. Karrock, S. B. Gutekunst, L. Blohm, C. Selhuber-Unkel, R. Buhmann, Y. Nazirizadeh, and M. Gerken, “Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection”, Biomedical Optics Express 6, 3724-3736 (2015). [17] S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum”, Materials 11, 526-536 (2018). [18] C. F. Wildfeuer, A. J. Pearlman, J. Chen, J. Fan, A. Migdall, and J. P. Dowling, “Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector”, Physical Review A 80, 043822 (2009). [19] J. Liao, X. Wu, L. Liu, and L. Xu, “Fano resonance and improved sensing performance in a spectral-simplified optofluidic micro-bubble resonator by introducing selective modal losses”, Optics Express 24, 8574-8580 (2016). [20] Y. Deng, G. T. Cao, H. Yang, G. H. Li, X. S. Chen, and W. Lu, “Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities”, Scientific Reports 7, 10639 (2017). [21] S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles”, Optics Letters 24, 5216-5219 (2013). [22] J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like Interference in self-assembled plasmonic quadrumer clusters”, Nano Letters 10, 4680-4685 (2010). [23] Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing”, Nanoscale 6, 4705-4715 (2014). [24] A. Hajebifard and P. Berini, “Fano resonances in plasmonic heptamer nano-hole arrays”, Optics Express 25, 18566-18580 (2017). [25] B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances”, ACS Nano 5, 8999-9008 (2011). [26] G. Huang, T.-H. Park, and M.-C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Scientific Reports 7, 4789 (2017). [27] N. Hiramatsu, D. A. Sagala, and T. Kishino, “Dielectric waveguide device; phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device; and method of manufacturing high frequency transmitter, high frequency receiver, high frequency transmitter/receiver and radar device, array antenna, and dielectric waveguide device”, European Patent, EP 2,009,731 A1. [28] A. J. Ticknor, J. T. Kenney, G. Vacca, D. A. Saville, and K. G. Purchase, “Microfluidc control for waveguide optical switches, variable attenuators, and other optical devices”, United States Patent, US 7,016,560 B2. [29] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers”, Journal of Lightwave Technology 19, 1970-1975 (2001). [30] A. N. Sloper, J. K. Deacon, and M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor”, Sensors and Actuators B: Chemical 1, 589-591 (1990). [31] W. Lukosz, “Integrated optical chemical and direct biochemical sensors”, Sensors and Actuators B: Chemical 29, 37-50 (1995). [32] R. Horváth, H. C. Pedersen, and N. Skivesen, “Optical waveguide sensor for on-line monitoring of bacteria”, Optics Letters 28, 1233-1235 (2003). [33] L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance”, Sensors and Actuators B: Chemical 113, 100-105 (2006). [34] M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers”, Biosensors and Bioelectronics 61, 95-101 (2014). [35] J. Cao, M. H. Tu, T. Sun, and T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor”, Sensors and Actuators B: Chemical 181, 611-619 (2013). [36] G. Liang, Z. Zhao, Y. Wei, K. Liu, W. Hou, and Y. Duan, “Plasma enhanced label-free immunoassay for alpha-fetoprotein based on a U-bend fiber-optic LSPR biosensor”, RSC Advances 5, 23990-23998 (2015). [37] H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance”, Optics Express 20, 21693-21701 (2012). [38] Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer”, Sensors 10, 3585-3596 (2010). [39] H. Wei, S. M. H. Abtahi, and P. J. Vikesland, “Plasmonic colorimetric and SERS sensors for environmental analysis”, Environmental Science: Nano 2, 120-135 (2015). [40] A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles”, Journal of the American Chemical Society 124, 10596-10604 (2002). [41] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment”, The Journal of Physical Chemistry B 107, 668-677 (2003). [42] J. Zhang, S. Chen, T. Gong, X. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection” Plasmonics 11, 743-751 (2016). [43] A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” Journal of the American Chemical Society 130, 5523-5529 (2008). [44] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing”, Nano Letters 9, 3922-3929 (2009). [45] K. W. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing”, ACS Nano 6, 4892-4902 (2012). [46] M. Kajiura, T. Nakanishi, H. Iida, H. Takada, and T. Osaka, “Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label”, Journal of Colloid and Interface Science 335, 140-145 (2009). [47] E. Kazuma, T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips”, Nanoscale 6 2397-2405 (2014). [48] S. Mittler, “Gold nanoparticles on waveguides for and toward sensing application”, Optical Guided-wave Chemical and Biosensors I, Springer Series on Chemical Sensors and Biosensors 7, 209-229 (2009). [49] F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing”, IEEE Sensors Journal 10, 1185-1191 (2010). [50] D. C. Cullen and C. R. Lowe, “A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor interface”, Sensors and Actuators B: Chemical 1, 576-579 (1990). [51] T. Kouno, M. Sakai, K. Kishino, and K. Hara, “Sensing operations based on hexagonal GaN microdisks acting as whispering-gallery mode optical microcavities”, Optics Letters 40, 2866-2869 (2015). [52] N. Miri and M. Mohammadzaheri, “Optical sensing using microspheres with different size and material”, IEEE Sensors Journal 14, 3593-3598 (2014). [53] H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors”, Sensors 13, 4192-4213 (2013). [54] Y. Zhao, X. Zhao, and Z. Gu, “Photonic crystals in bioassays”, Advanced Functional Materials 20, 2970-2988 (2010). [55] E. Choi, Y. Choi, Y. H. P. Nejad, K. Shin, J. Park, “Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals”, Sensors and Actuators B: Chemical 180, 107-113 (2013). [56] D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings”, Biosensors 3, 211-225 (1987). [57] M. J. Jory, P. S. Vukusic, and J. R. Sambles, “Development of a prototype gas sensor using surface plasmon resonance on gratings”, Sensors and Actuators B: Chemical 17, 203-209 (1994). [58] B. Troia, A. Paolicelli, F. D. Leonardis, and V. M. N. Passaro, “Photonic crystals for optical sensing: a review”, Advances in Photonic Crystals, ISBN 978-953-51-0954-9 (2013). [59] M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications”, Biosensors and Bioelectronics 27, 101-105 (2011). [60] D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection”, Biosensors and Bioelectronics 75, 273-284 (2016). [61] D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone”, Lab on a Chip 13, 2124-2132 (2013). [62] K. Srinivasan, O. Painter, “Momentum space design of high-Q photonic crystal optical cavities”, Optics Express 10, 670-684 (2002). [63] OK Biotech Co., Ltd. OKMETER Direct Blood Glucose Monitoring System. http://www.okbiotech.com/en/product-372268/OKmeter-Blood-Glucose-Monitoring-System-Blood-Glucose-Meter.html [64] Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer”, Optics and Lasers in Engineering 46, 666-670 (2008). [65] M. Okano and T. G. Gross, “Acute or chronic life-threatening diseases associated with Epstein-Barr virus infection”, The American Journal of the Medical Sciences 343, 483-489 (2012). [66] S. J. Duellman, K. L. Thompson, J. J. Coon, and R. R. Burgess, “Phosphorylation sites of Epstein–Barr virus EBNA1 regulate its function”, Journal of General Virology 90, 2251-2259 (2009). [67] S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods”, The Journal of Physical Chemistry B 103, 8410-8426 (1999). [68] E. D. Palik, “Handbook of optical constants of solids”, Academic Press (1985). [69] T. H. Yang, T. Y. Chen, N. T. Wu, Y. T. Chen, and J. J. Huang, “IGZO-TFT biosensors for Epstein–Barr virus protein detection”, IEEE Transactions on devices 64, 1286-1291 (2017). [70] H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Šteinbachová, and J. Homola, “Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus”, Biosensors and Bioelectronics 22, 1020-1026 (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21476 | - |
| dc.description.abstract | 本論文探討了消逝波與表面電漿子耦合在感測器上的應用,其中包含了兩個部份,第一部份是利用二維六角狀排列的光子晶體, 第二部份則是使用一維平面波導與奈米金球的複合結構來作分析。 在第一部份中,一個由週期性孔洞六角狀排列的二維光子晶體被利用來作為感測器。二維光子晶體在空間中將光束繞射到不同的角度,利用位於滿足相位匹配條件與成為消逝波之間的臨界波長來作為判斷施加在感測器表面介質的折射率。根據這樣的量測機制,我們使用了葡萄糖溶液作為待測物,展示了這樣的感測器具有高敏感度與低量測極限。同時,我們也使用了第四型人類皰疹病毒抗體作為待測物,觀測這樣的量測系統在感測抗體抗原等微小生物分子時的表現。由於生物分子表面功能化的因素,一層金薄膜加入了二維光子晶體表面,消逝波與金薄膜表面電漿極化子的耦合帶來了相位匹配條件的改變,進而對感測器表面的微小生物分子有著良好的感測性。為了進一步瞭解兩者耦合的特性,我們藉由光學模擬來觀測近場分布及對應的繞射頻譜,此外,不同晶格方向的量測結果也會在這一部份中探討。 在第二部份中,一個一維平面波導結構與表面沉積的奈米金球被利用來作為感測器。藉由光學模擬,研究來自波導模態的消逝波與來自奈米金球的局域表面電漿共振之耦合對表面電場的增強以及對量測結果的影響。使用葡萄糖溶液作為待測物,我們展示了在不同入射光角度下,其吸收頻譜變化與近場分布,探討這樣的耦合強弱對感測器表面介質折射率的改變有何關係。同時,實驗結果也被拿來作為驗證模擬數據,其結果表明這樣的耦合能局域地增強奈米金球表面電場,帶來相當程度的靈敏度提升。 | zh_TW |
| dc.description.abstract | This dissertation discusses sensor applications of evanescent wave and surface plasmon coupling, which contains two parts. The first part is discussed by using a two-dimensional (2D) hexagonal photonic crystal (PhC), whereas a hybrid structure composed of one-dimensional (1D) planar waveguide and gold nanoparticles (AuNPs) is applied in the second part. In the first part, a 2D periodic nanoholes array hexagonal PhC is used as a sensor. The PhC can diffract optical beams to various angles in the azimuthal space. The critical wavelength that satisfies the phase matching condition or becomes evanescent is employed to benchmark the refractive index of the material applied on the sensor surface. According to this sensing mechanism, glucose solution is used as the analyte, and it is demonstrated that our sensor has high sensitivity and low limits of detection (LOD). Furthermore, to investigate the performance of the sensor for detecting small biomolecules such as antigens and antibodies, Epstein-Barr nuclear antigen-1 (EBNA-1) antibody is also employed as the analyte in this research. Since the functionalization for biosensing, a thin gold film is deposited on the sensor surface. The coupling between the evanescent wave and surface plasmon polariton (SPP) changes the phase matching condition and enables the sensor sensitive to small biomolecules. To further understand the properties of the coupling, simulation of near-field distribution and the corresponding diffraction spectrum are analyzed. In addition, the sensing results of different lattice orientations are also discussed in this part. In the second part, a 1D planar waveguide with deposition of AuNPs is used as a sensor. The enhancement of electric field intensity in the vicinity of AuNPs from the coupling between the evanescent wave of the guided mode and the localized surface plasmon resonance (LSPR) and their sensing results are analyzed by simulations. Using glucose solution as the analyte, we demonstrate the wavelength shift in the absorption spectrum and near-field distribution at various incident angles and discuss the relation between the sensing results and the strong or weak coupling. Also, an experiment is employed to verify the simulation results. The results show that the coupling can locally enhance the electric field in the vicinity of AuNPs and improve the sensitivity of the sensor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:35:12Z (GMT). No. of bitstreams: 1 U0001-2201202118095400.pdf: 4015538 bytes, checksum: 8e785f62bd6ea01d54f19ea0d66cd936 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 摘要 IV Abstract VI Table of Contents VIII List of Figures XI List of Tables XVIII Chaper 1. Introduction 1 1.1. Preface 1 1.1.1. Photonic crystal sensor 1 1.1.2. Planar waveguide sensor 3 1.1.3. Localized Surface Plasmon Resonance sensor 3 1.2. Motivation 4 1.3. Dissertation structure 7 Chaper 2. Evanescent properties of optical diffraction from 2D hexagonal photonic crystals and their sensor applications 9 2.1. Introduction 9 2.2. Fabrication of photonic crystals 11 2.3. Measurement setup 12 2.4. Results and discussion 13 2.4.1. Optical behavior of the PhC 13 2.4.2. Sensing principles 18 2.4.3. Cut-off wavelength measurement and data acquisition 19 2.4.4. Detection limit and sensitivity 20 2.4.5. Repeatability and reliability 23 2.5. Summary 24 Chaper 3. Surface plasmons coupled 2D photonic crystal biosensors 25 3.1. Introduction 25 3.2. Fabrication of photonic crystals 28 3.3. Surface functionalization 28 3.4. Experimental method and simulations 32 3.4.1. Measurement 32 3.4.2. Simulations 33 3.4.3. Definition of incident and diffracted light orientations 34 3.5. Results and discussion 39 3.6. Summary 51 Chaper 4. Localized surface plasmon resonance enhanced planar waveguide sensor 53 4.1. Introduction 53 4.2. Materials and methods 54 4.2.1. Structure of the sensors 54 4.2.2. Simulation 55 4.2.3. Experiment 56 4.3. Results and discussion 58 4.3.1. Wavelength shifts at various incident angles 58 4.3.2. Near-field distribution 68 4.3.3. Experiment 69 4.4. Summary 73 Chaper 5. Conclusion 75 References 78 Publication List 89 | |
| dc.language.iso | en | |
| dc.title | 一維與二維結構中消逝波之表面電漿子耦合行為及其在感測器上之應用 | zh_TW |
| dc.title | Surface Plasmon Coupling Behaviors of Evanescent Waves in One- and Two-dimensional Structures and Their Sensor Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張憲彰(hsien-chang chang),楊志忠(Chih-Chung Yang),王祥辰(Hsiang-Chen Wang),李翔傑(Hsiang-Chieh Lee),蕭惠心(Hui-Hsin Hsiao) | |
| dc.subject.keyword | 二維光子晶體,免標誌生物感測器,表面電漿子耦合,局域表面電漿共振,平面波導, | zh_TW |
| dc.subject.keyword | 2D photonic crystal,label-free biosensor,surface plasmon coupling,localized surface plasmon resonance (LSPR),planar waveguide, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202100127 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-01-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2201202118095400.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
