Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21462
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪
dc.contributor.authorJhen-Cih Wuen
dc.contributor.author吳偵慈zh_TW
dc.date.accessioned2021-06-08T03:34:46Z-
dc.date.copyright2019-08-06
dc.date.issued2019
dc.date.submitted2019-08-01
dc.identifier.citationREFERENCE
Abdul Munajat, N., Nurfaizey, A.H., Haizal, M., Mohd Husin, M.H., Hajar Sheikh, S.,Sheikh Md Fadzullah, S., Omar, G., Azli Salim, M. and Akademia Baru, P. (2018) The Effects of Different Carbonization Temperatures on the Properties of Electrospun Carbon Nanofibre from Polyacrylonitrile (PAN) Precursor.
Abe, J., Kawase, K., Tachikawa, N., Katayama, Y. and Shiratori, S. (2017) Influence of carbonization temperature and press processing on the electrochemical characteristics of self-standing iron oxide/carbon composite electrospun nanofibers. RSC Advances 7(52), 32812-32818.
Al-Shannag, M., Al Qodah, Z., Bani Melhem, K., Qtaishat, M.R. and Alkasrawi, M. (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal 260, 749-756.
An, C., Huang, G., Yao, Y. and Zhao, S. (2017) Emerging usage of electrocoagulation technology for oil removal from wastew ater: A review. Science of The Total Environment 579, 537-556.
Ansari, A. and Nematollahi, D. (2018) A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited na nostructured β-PbO2 electrodes. Water Research 144, 462-473.
Ansari, S.A., Khan, M.M., Ansari, M.O. and Cho, M.H. (2016) Nitrogen doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry 40(4), 3000-3009.
Aslanzadeh, S., Ahvazi, B., Boluk, Y. and Ayranci, C. (2017) Carbon Fiber Production from Electrospun Sulfur Free Softwood Lignin Precursors. Journal of Engineered Fibers and Fabrics 12(4), 155892501701200405.
Babilas, D. and Dydo, P. (2018) Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Separation and Purification Technology 192, 419-428.
Babilas, D., Dydo, P., Jakóbik Kolon, A., Milewski, A., Bentkowska, D., Franczak, A. and Nycz, R. (2017) The effectiveness of nickel recovery from spent electroplating baths by electrodialysis.
Bai, H., He, P., Chen, J., Liu, K., Lei, H., Dong, F., Zhang, X. and Li, H. (2017a) Fabrication of Sc2O3 magneli phase titanium composite electrode and its application in efficient electrocatalytic degradation of methyl orange. Applied Surface Science 401, 218-224.
Bai, H., He, P., Pan, J., Chen, J., Chen, Y., Dong, F. and Li, H. (2017b) Boron-doped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. Journal of Colloid and Interface Science 497, 422-428.
Bai, J., Li, C., Wang, S. and Zhang, Y. (2013) A Novel Approach to Prepare Gold Nanoparticles/Polyacrylamide Composite Nanofibers. Rare Metal Materials and Engineering 42(3), 474-477.
Bao, S., Duan, J. and Zhang, Y. (2018) Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode. Chemosphere 208, 14-20.
Baruwati, B. (2019) Studies on the Synthesis, Characterization, Surface Modification and Application of Nanocrystalline Nickel Ferrite.
Belkacem, M., Khodir, M. and Abdelkrim, S. (2008) Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 228(1), 245-254.
Billah, A. (2016) Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication.
Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A. and Cipollina, A. (2018) Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 434, 121-160.
Casqueira, R.G., Torem, M.L. and Kohler, H.M. (2006) The removal of zinc from liquid streams by electroflotation. Minerals Engineering 19(13), 1388-1392.
Celebioglu, A., Aytac, Z., Umu, O.C.O., Dana, A., Tekinay, T. and Uyar, T. (2014) One step synthesis of size tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibe rs. Carbohydrate Polymers 99, 808-816.
Chehayeb, K.M., Farhat, D.M., Nayar, K.G. and Lienhard, J.H. (2017) Optimal design and operation of electrodialysis for brackish water desalination and for high salinity brine concentration. Desalination 420, 167-182.
Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent developments in photocatalytic water treatment technology: A review. Water Research 44(10), 2997-3027.
Close, J., Ip, J. and Lam, K.H. (2006) Water recycling with PV-powered UV LED disinfection. Renewable Energy 31(11), 1657-1664.
de Oliveira da Mota, I., de Castro, J.A., de Góes Casqueira, R. and de Oliveira Junior, A.G. (2015) Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. Journal of Materials Research and Technology 4(2), 109-113.
de Oliveira, G.R., Fernandes, N.S., Melo, J.V.d., da Silva, D.R., Urgeghe, C. and Martínez Huitle, C.A. (2011) Electrocatalytic properties of Ti supported Pt for decolorizing and removing dye from sy nthetic textile wastewaters. Chemical Engineering Journal 168(1), 208-214.
Duan, T., Chen, Y., Wen, Q. and Duan, Y. (2014) Enhanced electrocatalytic activity of nano TiN composited Ti/Sb SnO2 electrode fabricated by pulse electrodeposition for methylene b lue decolorization. RSC Advances 4(101), 57463-57475.
Elovitz, M.S. and von Gunten, U. (1999) Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone: Science & Engineering 21(3), 239-260.
Fan, C.-S., Liou, S.Y.H. and Hou, C. H. (2017) Capacitive deionization of arsenic contaminated groundwater in a single pass mode. Chemosphere 184, 924-931.
Feng, Y., Yang, L., Liu, J. and Logan, B.E. (2016) Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research & Technology 2(5), 800-831.
Folger, A., Kalb, J., Schmidt-Mende, L. and Scheu, C. (2017) Tuning the Electronic Conductivity in Hydrothermally Grown Rutile TiO2 Nanowires: Effect of Heat Treatment in Different Environments. Nanomaterials 7(10).
Gabelich, C.J., Tran, T.D. and Suffet, I.H.M. (2002) Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels. Environmental Science & Technology 36(13), 3010-3019.
Gan, W., Shang, X., Li, X.-H., Zhang, J. and Fu, X. (2019) Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene like TiO2@C.Colloids and Surfaces A: Physicochemical and Engineering Aspects 561, 218-225.
Gelb, L.D. and Gubbins, K.E. (1998) Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer−Emmett−Teller Analysis Method. Langmuir 14(8), 2097-2111.
Graça, N.S., Ribeiro, A.M. and Rodrigues, A.E. (2019) Modeling the electrocoagulation process for the treatment of cont aminated water. Chemical Engineering Science 197, 379-385.
Guo, X., Li, D., Wan, J. and Yu, X. (2015) Preparation and electrochemical property of TiO2/Nano graphite composite anode for electro catalytic degradation of ceftriaxone sodium. Electrochimica Ac ta 180, 957-964.
Guo, X., Wan, J., Yu, X. and Lin, Y. (2016) Study on preparation of SnO2-TiO2/Nano graphite composite anode and electro catalytic degradation of ceftriaxone sodium. Chemosphere 164, 421-429.
Han, J., Kim, Y., Jackson, D.H.K., Jeong, K.-E., Chae, H.-J., Lee, K.-Y. and Kim, H.J.(2018) Role of Au-TiO2 interfacial sites in enhancing the electrocatalytic glycerol oxidation performance. Electrochemistry Communications 96, 16-21.
Hao, Y., Shao, X., Li, B., Hu, L. and Wang, T. (2015) Mesoporous TiO2 nanofibers with controllable Au loadings for catalytic reduction of 4 nitrophenol. Materials Science in Semiconductor Processing 40, 621-630.
Huang, C.-y., Guo, R.-t., Pan, W.-g., Tang, J.-y., Zhou, W.-g., Liu, X.-y., Qin, H. and Jia, P.-y. (2019) One dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Applied Surface Science 464, 534-543.
Huang, S.-Y., Fan, C. S. and Hou, C. H. (2014) Electro enhanced removal of copper ions from aqueous solutions by capacitive dei onization. Journal of Hazardous Materials 278, 8-15.
Kaur, P., Kushwaha, J.P. and Sangal, V.K. (2018) Electrocatalytic oxidative treatment of real textile wastewater in continuous reactor: Degradation pathway and disposability study. Journal of Hazardous Materials 346, 242-252.
Klaysri, R., Ratova, M., Praserthdam, P. and Kelly, P.J. (2017) Deposition of Visible Light Active C Doped Titania Films via Magnetron Sputtering Using CO₂ as a Source of Carbon. Nanomaterials (Basel, Switzerland) 7(5), 113.
Le, N.L. and Nunes, S.P. (2016) Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies 7, 1-28.
Lee, C.G., Javed, H., Zhang, D., Kim, J. H., Westerhoff, P., Li, Q. and Alvarez, P.J.J. (2018) Porous Elec trospun Fibers Embedding TiO2 for Adsorption and Photocatalytic Degradation of Water Pollutants. Environmental Science & Technology 52(7), 4285-4293.
Lee, D.H., Ryu, T., Shin, J., Ryu, J.C., Chung, K. S. and Kim, Y.H. (2017) Selective lithium recovery fr om aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy 173, 283-288.
Li, D., Guo, X., Song, H., Sun, T. and Wan, J. (2018a) Preparation of RuO2-TiO2/Nano graphite composite anode for electrochemical degradation of ceftriaxone sodium. Journal of Hazardous Materials 351, 250-259.
Li, D., Sun, T.Y., Wang, L. and Wang, N. (2018b) Enhanced electrocatalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano GjFoam Ni/ Pd composite cathode. Electrochimica Acta 282, 416-426.
Li, K., Gao, S., Wang, Q., Xu, H., Wang, Z., Huang, B., Dai, Y. and Lu, J. (2015) In Situ Reduced Synthesis of Ti 3+ Self Doped TiO2 /g-C3N4 Heterojunctions with High Photocatalytic Performance under L ED Light Irradiation. ACS Applied Materials & Interfaces 7(17), 9023-9030.
Liang, Y., Li, N., Li, F., Xu, Z., Hu, Y., Jing, M., Teng, K., Yan, X. and Shi, J. (2019) Controllable nitrogen doping and specific surface from freestanding TiO2@carbon nanofibers as anodes for lithium ion battery. Electrochimica Acta 297, 1063-1070.
Liu, H., Zuo, K. and Vecitis, C.D. (2014) Titanium Dioxide Coated Carbon Nanotube Network Filter for Rapid and Effective Arsenic Sorption. Environmental Science & Technology 48(23), 1 3871-13879.
Liu, N.-L., Sun, S.-H. and Hou, C.-H. (2019) Studying the electrosorption performance of activated carbon electrodes in batch mode and single pass capacitive deionization. Separation and Purification Technology 215, 403-409.
Makuei, F., Tadesse, B., Albijanic, B. and Browner, R. (2018) Electroflotation of ultrafine chalcopyrite particles with sodium oleate collector. Minerals Engineering 120, 44-46.
Mohtashami, R. and Shang, J.Q. (2019) Treatment of automotive paint wastewater in continuous f low electroflotation reactor. Journal of Cleaner Production 218, 335-346.
Montes-Atenas, G., Garcia Garcia, F.J., Mermillod Blondin, R. and Montes, S. (2010) Effect of suspension chemistry onto voltage drop: Application to electro flotation. Powder Techno logy 204(1), 1-10.
Mukimin, A., Vistanty, H. and Zen, N. (2015) Oxidation of textile wastewater using cylinder Ti/β PbO 2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal 259, 430-437.
Nogueira, M.V., Lustosa, G.M.M.M., Kobayakawa, Y., Kogler, W., Ruiz, M., Monteiro Filho, E.S., Zaghete, M.A. and Perazolli, L.A. (2018) Nb-Doped TiO2 Photocatalysts Used to Reduction of CO2 to Methanol. Advances in Materials Science and Engineering 2018, 8.
Peng, S., Jin, G., Li, L., Li, K., Srinivasan, M., Ramakrishna, S. and Chen, J. (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chemical Society Reviews 45(5), 1225-1241.
Pennycook, S.J., Lupini, A.R., Varela, M., Borisevich, A., Peng, Y., Oxley, M.P., Van Benthem, K. and Chisholm, M.F. (2007) Scanning Microscopy for Nanotechnology: Techniques and Applications. Zhou, W. and Wang, Z.L. (eds), pp. 152-191, Springer New York, New York, NY.
Perathoner, S. and Centi, G. (2018) Catalysis for solar driven chemistry: The role of electrocatalysis. Catalysis Today.
Qin, P., Li, X., Gao, B., Fu, J., Xia, L., Zhang, X., Huo, K., Shen, W. and Chu, P.K. (2018) Hierarchical TiN nanoparticles assembled nanopillars for flexible supercapacitors with high volumetric capacitance. Nanoscale 10(18), 8728-8734.
Qin, W.-q., Ren, L. y., Wang, P. p., Yang, C. r. and Zhang, Y. s. (2012) Electro-flotation and collision attachment mechanism of fine cassiterite. Transactions of Nonferrous Metals Society of China 22(4), 917-924.
Qin, X., Jing, L., Tian, G., Qu, Y. and Feng, Y. (2009) Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. Journal of Hazardous Materials 172(2), 1168-1174.
Qu, R., Liu, N., Chen, Y., Zhang, W., Zhang, Q., Liu, Y. and Feng, L. (2018) A MoS2 nanosheet coated mesh for pH induced multi pollutant water remediation with in situ electrocatalysis. Journal of Materials Chemistry A 6(15), 6435-6441.
Ramakrishna, S. (2005) An introduction to electrospinning and nanofibers, World Scientific.
Reilly, M., Cooley, A.P., Tito, D., Tassou, S.A. and Theodorou, M.K. (2019) Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia 161, 343-351.
Sadeddin, K., Naser, A. and Firas, A. (2011) Removal of turbidity and suspended solids by electro coagulation to improve feed water quality of reverse osmosis plant. Desalination 268(1), 204-207.
Safavi, A., Maleki, N., Tajabadi, F. and Farjami, E. (2007) High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochemistry Communications 9(8), 1963-1968.
Seo, S.J., Jeon, H., Lee, J.K., Kim, G. Y., Park, D., Nojima, H., Lee, J. an d Moon, S. H. (2010) Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research 44(7), 2267-2275.
Solak, M., Kılıç, M., Hüseyin, Y. and Şencan, A. (2009) Removal of suspended solids and turb idity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems. Journal of Hazardous Materials 172(1), 345-352.
Song, Y., Wei, C., Zhang, X., Wei, X., Song, X. and Sun, Z. (2015) Nanoporous Pd/TiO2 composites prepared by one step dealloying and their electrocatalytic performance for methanol/ethanol oxidation. Materials Chemistry and Physics 161, 153-161.
Sosa-Fernandez, P.A., Post, J.W., Bruning, H., Leermakers, F.A.M. and Rijnaarts, H.H .M. (2018) Electrodialysis based desalination and reuse of sea and brackish polymer flooding produced water. Desalination 447, 120-132.
Szroeder, P. and Ritter, U. (2011) Application of Films Consisting of Carbon Nanoparticles for Electrochemical Detectio n of Redox Systems in Organic Solvent Media AU Tsierkezos, Nikos G. Fullerenes, Nanotubes and Carbon Nanostructures 19(6), 505-516.
Tan, W., Hao, R., Liu, Y., Zhu, G. and Liu, L. (2016) Desalination of graphite oxide by electrodialysis. Desalination 385, 53-57.
Tang, B., Shi, H., Fan, Z. and Zhao, G. (2018) Preferential electrocatalytic degradation of 2,4 dichlorophenoxyacetic acid on molecular imprinted mesoporous SnO2 surface. Chemical Engineering Journal 334, 882-890.
Tang, K., Li, Y., Cao, H., Duan, F., Zhang, J., Zhang, Y. and Wang, Y. (2015) Integrated electrospun carbon nanofibers with vanadium and single walled carbon nanotubes through covalent bonds for high performance supercapacitors. RSC Advances 5(50), 40163-40172.
Wang, G., Xu, L., Zhang, J., Yin, T. and Han, D. (2012) Enhanced Photocatalytic Activity of TiO2 Powders (P25) via Calcination Treatment. International Journal of Photoenergy 2012, 9.
Wang, X., Xia, R., Muhire, E., Jiang, S., Huo, X. and Gao, M. (2018) Highly enhanced photocatal ytic performance of TiO2 nanosheets through constructing TiO2/TiO2 quantum dots homojunction. Applied Surface Science 459, 9-15.
Wold, A. (1993) Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials 5(3), 280-283.
Wu, M., Ouyang, Y., Zhao, K., Ma, Y., Wang, M., Liu, D., Su, Y. and Jin, P. (2016) A novel fabrication method for titanium dioxide/activated carbon fiber electrodes and the effects of titanium dioxide on phenol degradation. Journal of Environmental Chemical Engineering 4(3), 3646-3653.
Xu, M., Wang, Z., Wang, F., Hong, P., Wang, C., Ouyang, X., Zhu, C., Wei, Y., Hun, Y. and Fang, W. (2016) Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochimica Acta 201, 240-250.
Yang, Y.S. and Cho, T. P. (2013) Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings. Materials 6(8).
Yang, Y., Wang, H., Li, J., He, B., Wang, T. and Liao, S. (2012) Novel Functionalized Nano TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment. Environmental Science & Technology 46(12), 6815-6821.
Yang, Y., Yu, Y., Yang, N.n., Huang, B., Kuang, Y. f. and Liao, Y. w. (2018) Adsorption behavior of isocyanate/ethylenediamine tetraacetic acid functionalized graphene oxides for Cu2+ removal. Water Science and Technology 78(12), 2459-2468.
Yao, Y., Zhao, C., Zhao, M. and Wang, X. (2013) Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepar ed by pulse electrodeposition. Journal of Hazardous Materials 263, 726-734.
Yue, Z. and Economy, J. (2017) Activated Carbon Fiber and Textiles. Chen, J.Y. (ed), pp. 61-139, Woodhead Publishing, Oxford.
Zazou, H., Afanga, H., Akhouairi, S., Ouchtak, H., Addi, A.A., Akbour, R.A., Assabbane, A., Douch, J., Elmchaouri, A., Duplay, J., Jada, A. and Hamdani, M. (2019) Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process E ngineering 28, 214-221.
Zhang, A.-Y., Long, L.-L., Liu, C., Li, W.-W. and Yu, H.-Q. (2014) Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high energy {001} facets. Water Research 66, 273-282.
Zhang, C., Liu, L., Wang, J., Rong, F. and Fu, D. (2013) Electrochemical degradation of ethidium bromide using boron doped diamond electrode. Separation and Purification Technology 107, 91-101.
Zhang, Q., Huang, W., Hong, J.m. and Chen, B. Y. (2018) Deci phering acetaminophen electrical catalytic degradation using single form S doped graphene/Pt/TiO2 . Chemical Engineering Journal 343, 662-675.
Zhang, Y., He, P., Jia, L., Li, C., Liu, H., Wang, S., Zhou, S. and Dong, F. (2019) Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R. Journal of Colloid and Interface Science 533, 750-761.
Zhang, Y., Xu, C., Chen, J., Zhang, X., Wang, Z., Zhou, J. and Cen, K. (2015) A novel photo thermochemical cycle for the dissociation of CO2 using solar energy. Applied Energy 156, 223-229.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21462-
dc.description.abstract近年來,隨著水與能源鏈結(Water-Energy Nexus)的觀念受到 重視,開發水與能源整合型處理系統為當今 的主要趨勢,電化學水處理系統 不僅可以光伏發電驅動且能有效去除水中污染物產生潔淨水。其中,電催化(Electrocatalysis) 被視為是具發展潜力的電化學水處理技術之一,可用於染料、藥物和個人保健用品(PPCPs)及水中新興汙染物之降解。 透過施加電壓,直接於陽極電極表面降解水中汙染物,或是透過產生 強氧化性之物種將污染物轉化為CO2、H2O及小分子。合適之陽極催化材料可以加速 產生強氧化活性物種及有利於提升整體降解效果,其中,將具催化效果之奈米顆粒(如TiO2、SnO2和Pt)與適當之載體結合,製備功能型電催化電極,受到各方的矚目。本研究透過 靜電紡絲技術(Electrospinning)製備之複合型TiO2碳纖維(TiO2/CF),以碳化之靜電紡絲纖維作為高導電性之基材,不僅有利於提升電子轉移能力,同時將TiO2奈米顆粒有效分散於纖維上,亦可良好發揮TiO2之催化效果,以作為具高電催化活性之電極, 進一步探討其應用於電催化去除汙染物之可行性。透過掃描式電子顯微鏡(SEM)、X光繞射分析(XRD)和X射線光電子能譜(XPS)了解TiO2/CF的表面型態、晶體結構和化學狀態,電化學阻抗圖譜(EIS)評估在不同碳化溫度下之電極電阻,並以光漫反射光譜(DRS)進一步求得材料的能隙大小變化。研究結果指出TiO2濃度、碳化溫度及 施加電壓對於電催化效果有顯著的影響。隨著碳化溫度的增加,電極的導電性顯著提升有利於快速之電子轉移,而TiO2的主要晶體結構從原本的複合晶相轉變為金紅石相,與純TiO2粉末相比,TiO2/CF在1000度碳化後電極的能隙大幅下降(3.1 eV→2.39 eV),推測可能是高導性之碳-鈦複合結構及金紅石相所致。為了進一步評估TiO2/CF之電催化活性,以結晶紫作為汙染物進行電催化實驗。實驗結果顯示,TiO2(1.2)/CF-1000在僅施加1 V的電壓下,即有85%的降解效果。因此,本研究製備之TiO2/CF電極展現優異的電催化活性,不僅提高污染物降解效果,又可降低電催化之能源需求。此外,本研究亦建立光伏驅動之電催化降解系統,透過將太陽能轉換成電能的方式,將更有利於電催化水處理技術之永續發展,展現高度應用潛力。zh_TW
dc.description.abstractElectrocatalysis is one of the promising electrochemical processes, which can degrade water pollutants such as dyes, personal care and pharmaceutical products (PPCPs) and other emerging contaminants into CO2 , H2O or biodegradable organic ones. The electrocatalytic performance is mainly determined by the anodic material, which governing the production of strong reactive oxygen species (‧OH and H2O2). TiO2 has many advantages, such as low cost, good chemical compatibility , long term stability. However, its low electrical conductivity may result in restrictions on the use of electrocatalyst. As the anodic material, TiO2 functional electrode can be produced by the integration of TiO2 nanoparticles with an appropriate support material.
The main objective of this study is to prepare a novel electrocatalytic electrode by decorating TiO2 nanoparticles onto electrospun carbon fibers(TiO2/CF) for degradation of water pollutants. Firstly, we dispersed TiO2 nanoparticles in polyacrylonitrile (PAN) solution to develop a composite of TiO2 and electrospun fibers via electrospinning process Then, the composite were manufactured by carbonization at 400。C 800。C and 1000。C. The results of this study indicate that the TiO2 concentration, carbonization temperature and applied voltage have a significant effect on the characteristics of electrode and the performance of electrocatalysis. As the carbonization temperature increased, the conductivity of electrode was drastically enhanced and the major crystal structure of TiO2 transformed to rutile phase, which may conduce to the enhancement of electrocatalytic performance.
As evidenced, hydroxyl radical can be produced by TiO2/CF carbonized at 1000。C for the electrocatalytic degradation of crystal violet at voltage of 1 V. In this case, a high removal efficiency of 85% was achieved. Therefore, the TiO2 embedded electrocatalytic carbon fibers electrode shows superior electrocatalytic activity that can be driven at a relatively lower voltage. Note that we established a photovoltaic-driven electrocatalytic degradation system for technology demonstration. By converting solar energy into electric energy, the PV-powered electrocatalytic degradation system show a high potential for the degradation of water pollutants.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:34:46Z (GMT). No. of bitstreams: 1
ntu-108-R06541110-1.pdf: 3812352 bytes, checksum: 1743884d07c3f8c78c1ed27542ab520a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsCONTENTS
口試委員審定書
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 1
Chapter 2 Literature review 3
2.1 Electrochemical technologies in water treatment 3
2.1.1 Electrodialysis (ED) 3
2.1.2 Electrosorption 5
2.1.3 Electroflotation (EF) 6
2.1.4 Electrocoagulation (EC) 6
2.1.5 Electrocatalysis 8
2.2 Electrode materials for electrocatalysis 10
2.3 Multifunctional nanomaterials 14
Chapter 3 Experimental and methods 16
3.1 Materials and Chemicals 16
3.2 Equipment and instrumen ts 17
3.3 Research Design 19
3.4 Preparation of carbon fibers, TiO2 decorated electrospun carbon fibers 20
3.5 Characterization of electrode 24
3.5.1 Accelerated surface area and porosimetry system 24
3.5.2 Field emission scanning electron microscopy (FE-SEM) 25
3.5.3 Scanning transmission electron microscope (STEM) 26
3.5.4 Water contact angle 26
3.5.5 X ray diffraction (XRD) 27
3.5.6 X ray photoelectron spectroscopy (XPS) 27
3.5.7 Electrochemical impedance spectroscopy (EIS) 28
3.5.8 Diffuse reflectance spectra (DRS) 29
3.6 Electrocatalytic degradation experiments 30
3.6.1 The setup of electrocatalytic degradation 30
3.6.2 The indexes for electrocatalytic performance 32
3.7 Analysis of hydroxyl radical 33
Chapter 4 Results and Discussion 34
4.1 Electrode Characteristics 34
4.1.1 Characterization of structure and morphology 34
4.1.2 TiO2/CF characteriza tion by XRD and XPS 39
4.2 Effect of TiO2/CF electrode conductivity 43
4.3 Effect of optical property 45
4.4 Electrocatalytic degradation performance 46
4.4.1 Effect of TiO2 concentration 46
4.4.2 Effect of TiO2 /CF carbonization temperature 49
4.4.3 Effect of applied voltage 52
4.5 Performance of TiO2/CF for OH generation 55
4.6 Possible mechanism of electrocatalysis 57
4.7 Evaluation of electrode recyclability 58
4.8 Solar driven electrocatalysis 59
Chapter 5 Conclusions and Suggestions 61
5.1 Conclusions 61
5.2 Suggestions 62
REFERENCE 63
dc.language.isoen
dc.title功能性二氧化鈦-碳複合纖維應用於水中污染物之電催化降解zh_TW
dc.titleFunctional TiO2 composite carbon fibers for electro-catalytic degradation of water pollutantsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄,曾惠馨,林逸彬
dc.subject.keyword靜電紡絲,二氧化鈦,奈米複合材料,電催化降解,太陽能,zh_TW
dc.subject.keywordelectrospinning,TiO2 nanoparticle,electrocatalysis,photovoltaic,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201902299
dc.rights.note未授權
dc.date.accepted2019-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved