Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21451
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文彬(Wen-bin Liau)
dc.contributor.authorPang-Hsiao Liuen
dc.contributor.author劉邦孝zh_TW
dc.date.accessioned2021-06-08T03:34:28Z-
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation[1] Tsao, J.; Lewis, N.; Crabtree, G., Solar FAQs. 2006
[2] National Renewable Energy Laboratory, Research Cell Efficiency Record https://www.nrel.gov/pv/cell-efficiency.html,
[3] Green et al., AWY. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl. 2019; 27: 565– 575
[4] Taesoo D. Lee et al., A review of thin film solar cell technologies and challenges, Renewable and Sustainable Energy Reviews, Volume 70, 2017, Pages 1286-1297
[5] Michael Grätzel et al., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (24): p737 - 740.
[6] 戴明鳳。奈米 TiO2晶粒和藍莓或覆盆子的汁液作為染料 DIY 製作染料敏化奈米晶化太陽電池。國立清華大學物理系
[7] G. Yu et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 15 Dec 1995: Vol. 270, Issue 5243, pp. 1789-1791
[8] Matthieu Manceau et al., ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules, Organic Electronics, Volume 12, Issue 4, 2011, Pages 566-574
[9] Jun Yuan et al., Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, Joule, Volume 3, Issue 4, 2019, Pages 1140-1151
[10] Jung, H. S et al., Perovskite Solar Cells: From Materials to Devices. Small, 2015 11: 10-25.
[11] Nam-Gyu Park et al., Perovskite solar cells: an emerging photovoltaic technology, Materials Today, Volume 18, Issue 2, 2015, Pages 65-7.
[12] Guichuan Xing et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, SCIENCE, 18 Oct 2013: 344-347
[13] Yang, T. et al., The Significance of Ion Conduction in a Hybrid Organic–Inorganic Lead‐Iodide‐Based Perovskite Photosensitizer. Angew. Chem. Int. Ed., 54: 7905-7910.
[14] Yang et al., Achieving Long‐Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h. Adv. Sci. 2019, 1900528.
[15] Luis K Ono et al., Journal of Physics D: Applied Physics, Volume 51, Number 9
[16] V.M. Goldschmidt et al., Dtsch. Chem. Ges., 60 (1927), pp. 1263-1268.
[17] C. Li et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites, Acta Cryst. (2008). B64, 702-707.
[18] David B et al., Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater.1996, 8, (3), 791-800.
[19] Minsu Jung et al., Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications, Chem. Soc. Rev., 2019,48, 2011-2038.
[20] Hsinhan Tsai et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells, Nature volume 536, pages 312–316
[21] Z. Wang et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites, Nat. Energy, 2017, 2, 17135.
[22] R.D. Shannon, Acta Crystallogr. A, 32 (1976), pp. 751-767
[23] Martin A. Green et al., The emergence of perovskite solar cells, Nature Photonics volume 8, pages 506–514 (2014)
[24] Seon Joo Lee et al., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex, J. Am. Chem. Soc.2016138123974-3977
[25] Samuel D. Stranks et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science 18 Oct 2013: Vol. 342, Issue 6156, pp. 341-344.
[26] Hui-Seon Kim et al., Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nature Communications volume 4, Article number: 2242 (2013).
[27] Atsuhiko Miyata et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites, Nature Physics volume 11, pages 582–587 (2015).
[28] GAMRY instruments, DSSC: Dye Sensitized Solar Cells, https://www.gamr y.com/application- notes / physechem/ dssc-dye-sensitized-solar-cells/
[29] J. H. Heo et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photon., 7 (6), 486 –491 (2013).
[30] T. Leijtens et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4 2885 (2013).
[31] T. Leijtens et al., The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells, J. Phys. Chem. Lett., 5 (7), 1096 –1102 (2014).
[32] E. Edri et al., Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor), Nano Lett., 14 (2), 1000 –1004 (2014).
[33] W. S. Yang et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (6240), 1234 –1237 (2015).
[34] Jin Hyuck Heo et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci., 2015, 8, 1602
[35] J. H. Park et al., Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type nio electrode formed by a pulsed laser deposition, Adv. Mater., 27 (27), 4013 –4019 (2015)
[36] Michael M. Lee et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 02 Nov 2012: Vol. 338, Issue 6107, pp. 643-647
[37] Waleed Abu Labana et al., Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci., 2013, 6, 3249-3253
[38] Carrier generation and recombination, https://en.wikipedia.org/wiki/Carrier_ generation_and_recombination#Recombination_mechanisms
[39] PV EDUCATION. ORG https://www.pveducation.org/
[40] 邁向鈣鈦礦單結太陽能電池的S-Q理論效率極限, https://www.getit01.com /p2018082240232063/
[41] Ossila enabling materials science, https://www.ossila.com/pages/solar-cells -theory
[42] Eran Edri et al., Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells, J. Phys. Chem. Lett.201453429-433
[43] ENLITECH, https://zh-tw.enlitechnology.com/show/quantum-efficiency.htm
[44] GAMRY INSTRUMENTS, https://cn.gamry.com/application-notes-3/eis/basics -of-eis/
[45] 獻給被電化學阻抗譜(EIS)困擾的你, https://kknews.cc/zh-tw/ science/vza5ony.html
[46] Monojit Bag et al., Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability, J. Am. Chem. Soc. 2015, 137, 13130−13137
[47] Victoria Gonzalez-PedroEmilio et al., General Working Principles of CH3NH3PbX3 Perovskite Solar Cells, Nano Lett. 2014142888-893
[48] 陳敏章。半導體物理元件講義。國立台灣大學材料科學與工程學系
[49] Kyung-Geun Lim et al., Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells, J. Mater. Chem. C, 2018, 6, 2915
[50] Fong-Yi Cao et al., Self-assembled tri-, tetra- and penta-ethylene glycols as easy, expedited and universal interfacial cathode-modifiers for inverted polymer solar cells, J. Mater. Chem. A, 2016, 4, 8707-8715
[51] Chun-Guey Wu et al., High efficiency stable inverted perovskite solar cells without current hysteresis, Energy Environ. Sci., 2015, 8, 2725-2733.
[52] Christians J et al., Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J Am Chem Soc. 2015 Feb 4;137(4):1530-8.
[53] Jo, J. W. et al., Improving Performance and Stability of Flexible Planar‐Heterojunction Perovskite Solar Cells Using Polymeric Hole‐Transport Material. Adv. Funct. Mater., 26: 4464-4471.
[54] Kyung-Geun Lim et al., Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers with High Work Function, Adv. Mater. 2014, 26, 6461–6466.
[55] Hyosung Choi et al., Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells, Nature Communications volume 6, Article number: 7348 (2015).
[56] Xiaodong Li et al., Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells, J. Mater. Chem. A, 2015, 3, 15024.
[57] Yao Liu et al., A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions, Adv. Energy Mater. 2016, 6, 1600664.
[58] Qifan Xue et al., Improving Film Formation and Photovoltage of Highly Efficient Inverted-Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers, Adv. Energy Mater. 2016, 6, 1502021.
[59] N. Marinova et al., J COLLOID INTERF SCI, Vol. 488, 2017, 373-389
[60] Yao Liu et al., Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces, Adv. Energy Mater. 2017, 1701235.
[61] Noritomo Kobayashi et al., Chain Distortion of m-Linked Aromatic Polymers: Poly(m-phenylene) and Poly(m-pyridine), Macromolecules 2004, 37, 7986-7991.
[62] Tomas Leijtens et al, Electronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility, ACS nano, VOL. 8, NO. 7, 7147–7155, 2014
[63] X. Li et al., ACS Appl. Mater. Interfaces 2017, 9, 31357−31361
[64] Yao Liu et al, Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells, Adv. Energy Mater. 2016, 6, 1501606
[65] Yue Wang et al, High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode, Opt. Express 25, 7719-7729 (2017)
[66] Jin Hyuck Heo et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci., 2015, 8, 1602
[67] Jinho Lee et al, A Printable Organic Electron Transport Layer for Low-Temperature-Processed, Hysteresis-Free, and Stable Planar Perovskite Solar Cells, Adv. Energy Mater. 2017, 7, 1700226
[68] 台大貴重儀器中心 元素分析儀(EA), https://www.hic.ch.ntu.edu.tw/EA/ea_ Reference.html#top
[69] Olbrich, P. (2019). THz radiation induced spin polarized currents in low dimensional semiconductor structures.
[70] Brenno A. D. Neto et al, 2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules, Eur. J. Org. Chem. 2013, 228–255
[71] Oxidation of Fluorene to Fluorenone Mechanism, https://study.com/academy/ lesson/oxidation-of-fluorene-to-fluorenone-mechan-ism.html
[72] Organic Chemistry Portal, https://www.organic-chemistry.org/namedreactions/ staudinger-reaction.shtm
[73] Master Organic Chemistry, https://www.masterorganicchemistry.com/2018/06/07 /protecting-groups-for-amines-carbamates/
[74] 賴育英。有機高分子化學講義。國立台灣大學高分子科學與工程研究所
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21451-
dc.description.abstract本文旨在設計、合成及分析帶有不同官能基的共軛聚電解質,透過鑑定高分子的官能基修飾,並探討分析高分子結構與性質,以開發高效性電洞傳導層材料,應用於p-i-n結構之鈣鈦礦太陽能電池。
本研究第一部份使用芴(fluorene, FL)與苯并噻二唑(benzothiadiazole, BT)作為高分子主鏈的共軛主結構,其中FL在九號位上兩個氫原子容易被取代成含有末端官能基之雙碳鏈結構,而另一部分則引入BT,此為強拉電子基團,可使高分子HOMO能階有效下降,而兩旁的thiophene則為π-spacer,用以舒緩FL與BT之間的扭轉角,增加主鏈平面性。本研究共合成三種不同官能基的共軛聚電解質,分別為PFNH3BT (-NH3+)、PFNM3BT (-NMe3+)及PFSO3BT (-SO3-),並使用為p-i-n鈣鈦礦太陽能電池的電洞傳導層。元件分析上,因為這些共軛聚電解質擁有較深HOMO能階(依序為-5.38 eV、-5.44 eV及-5.40 eV),可有效減少電動傳遞時的能量損失,增加開環電壓值。另外,它們的表面均比PEDOT:PSS疏水,使得在其表面成長的MAPbI3晶粒比在傳統常用的PEDOT:PSS表面成長者大,對短路電流有所提升。因此,使用此等共軛聚電解質來取代PEDOT:PSS作為電洞傳導層,可顯著地將元件最高效率從12.89 %分別大幅提升到17.71 % (PFNH3BT)、14.92 % (PFNM3BT)及17.14 % (PFSO3BT)。另外,三種官能基間存在微小的差異,一個表面性親疏水性導致鈣鈦礦成長的差異,另一個是對ITO表面功函數修飾的差異,在元件表現上PFNH3BT相似於PFSO3BT而略好於PFNM3BT。
第二部分置換HTL為P3HT-COOH之p-i-n鈣鈦礦太陽能電池結構,延用帶有-NMe3+之高分子PFNM3BT,用以修飾PC60BM與陰極(Ag)間的界面,有效降低Ag的表面功函數從4.60 eV到4.40 eV,同時改善兩層間的接觸面狀態、降低再結合速率,將填充因子從76.92 %增加到80.86 %,而電流則微小的提升,最後效率從16.30 %提高到17.11 %。
最後一部份則著重於設計另一種新的共軛主鏈,其係將環戊二噻吩(cyclepentadithiophene, CPDT)及二氟噻吩(difluorothiophene)進行交替式共聚合,形成帶有羧酸根之共軛聚電解質,PC3HDFT及PC8HDFT。紫外光-可見光吸收光譜顯示,各別的溶液態與薄膜態間並無明顯的紅位移,薄膜能階分析上,這兩者皆有深的HOMO能階(分別為 -5.38 eV和-5.42 eV),最後作為p-i-n鈣鈦礦太陽能電池結構之電洞傳導層,初步嘗試元件效率約為14.44 %及14.29 %。
zh_TW
dc.description.abstractA series of conjugated polyelectrolyte (CPE) with different functional groups were designed and synthesized by Stille polymerization. The correlation between chemical structures and properties of such CPEs and the effect of these polymers as the hole transport layer of perovskite solar cells on photovoltaic properties were fully investigated.
In the first part, three CPEs with the same conjugated backbone were synthesized using fluorene (FL) and benzothiadiazole (BT) as building blocks. FL is a useful monomer to introduce various functional groups into polymer main chain by simply grafting the 9-position of the ring with two functionalized alkyl chains. Herein, an electron-deficient BT monomer and two thiophenes were applied to lower the HOMO and reduce the twist angle between FL and BT, producing three new CPEs with ammonium (NH3+), trimethylammonium (NM3+) and sulfonate (SO3-) moieties, namely PFNH3BT、PFNM3BT and PFSO3BT, respectively. These CPEs were then utilized as a hole transport layer (HTL) to fabricate inverted perovskite solar cells (PSCs). The solar cells based on our new CPEs outperformed the one with PEDOT:PSS, which is the most common HTL. The improved open-circuit voltage (Voc) was attributed to reduced energy loss of transferring holes from perovskite to HTL because the HOMO levels (- 5.38 eV, -5.44 eV and -5.40 eV) of our CPEs are deeper than that (-5.20 eV) of PEDOT: PSS, minimizing the gap to the HOMO (-5.62 eV) of perovskite. In addition, the perovskites can grow into bigger crystals and grains on the conjugated polyelectrolytes than on the PEDOT:PSS surface, reducing charge carries recombination and then enhancing the short-circuit current density (Jsc). However, the type of functional groups greatly influenced the growth behavior of perovskites and interfacial charge recombination resistance. As a result, replacing PEDOT:PSS with PFNH3BT, PFNM3BT and PFSO3BT as HTL effectively increases the power conversion efficiency (PCE) from 12.89 % to 17.71%, 14.92 % and 17.14 %, respectively, for champion cells.
In the second part, PFNM3BT was chosen as an interlayer sandwiched between PC60BM as the electron transport layer, and silver as the electron collection electrode because it is soluble in high polar alcohol solvents. This polyelectrolyte interlayer successfully reduced the WF of Ag from 4.60 eV to 4.40 eV, as measured by photoelectron spectroscopy in air (PESA), and increased charge recombination resistance, as measured by electrochemical impedance spectroscopy (EIS), increasing the fill factor from 76.62 % to 80.86 %, and slightly improving the Jsc. Consequently, the PCE was raised from 16.30 % to 17.11 %.
In the final part, we utilized cyclepenta-dithiophene (CPDT) and difluorothiophene (DFT) as building blocks to synthesize new type of CPE with carboxyl acid groups. Two such PCEs with propyl and octyl chains were prepared and named as PC3HDFT and PC8HDFT, respectively. The PESA measurements indicated both CPEs had deep HOMO levels. Preliminary PCEs of the PSCs based on PC3HDFT and PC8HDFT as HTL were 14.44 % and 14.29 %, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:34:28Z (GMT). No. of bitstreams: 1
ntu-108-R06527060-1.pdf: 7494389 bytes, checksum: 6eba240edb9fb635733f7e61abf9f680 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 III
ABSTRACT V
目錄 VII
圖目錄 XII
表目錄 XIX
第一章 緒論 1
1.1 太陽能電池 1
1.2 鈣鈦礦太陽能電池 3
1.2.1 有機金屬鹵化鈣鈦礦晶體結構 4
1.2.2 有機金屬鹵化鈣鈦礦的光學與電性 7
1.2.3 鈣鈦礦太陽能電池結構演進 10
1.3 實驗動機與論文架構 13
第二章 太陽能電池元件與特性參數 14
2.1 鈣鈦礦太陽能電池工作原理 14
2.1.1 吸收 16
2.1.2 再結合 16
2.2 太陽能電池元件參數 19
2.2.1 太陽能光譜 19
2.2.2 電流-電壓量測 21
2.2.3 外部量子效率 24
2.3 分析特性與理論 25
2.3.1 電化學阻抗圖譜 25
2.3.2 金屬-半導體接觸理論 27
2.3.3 共軛聚電解質的偶極 30
第三章 不同的官能基共軛聚電解質作為電洞傳導層之光電性質分析探討 32
3.1 介紹 32
3.2 聚電解質的設計 34
3.3 單體與高分子合成 35
3.3.1 單體逆合成分析與合成路徑 35
3.3.2 高分子合成 37
3.4 結果與討論 39
3.4.1 單體鑑定 39
3.4.2 高分子PFNH3BT、PFNM3BT的結構鑑定 45
3.4.2 高分子性質 50
3.4.3 元件結構、性質與光電性分析 56
3.5 結論 69
第四章 電子傳導層與陰極之間界面修飾的光電性質分析探討 70
4.1 介紹 70
4.2 結果與討論 72
4.2.1 元件結構與分析 72
4.2.2 光伏性質 73
4.2.3 電化學阻抗圖譜特徵 75
4.2.4 修飾能階分析 76
4.3 結論 77
第五章 羧酸官能基之共軛高分子電解質作為電洞傳導層的光電性質 78
5.1 介紹與聚電解質設計 78
5.2 單體與高分子合成 79
5.3 結果與討論 82
5.3.1 高分子性質 82
5.3.2 元件光伏性質 85
5.4 結論 86
第六章 實驗流程 87
6.1 化學試劑與實驗儀器 87
6.1.1化學試劑 87
6.1.2實驗儀器 90
6.2 元件製程與量測 97
6.2.1元件製程 97
6.2.2光電性質量測 101
6.3 單體合成 105
6.3.1 2,7-Dibromo-9H-fluorene (1) 的合成 107
6.3.2 2,7-Dibromo-9,9-bis(3-bromopropyl)-9H-fluorene (2) 的合成 108
6.3.4 Di-tert-butyl ((2,7-dibromo-9H-fluorene-9,9-diyl) bis(propane-3,1-diyl))dicarbamate (4)的合成 110
6.3.5 3,3'-(2,7-Dibromo-9H-fluorene-9,9-diyl)bis(N,N,N- trimethylpropan-1-aminium) bromide (5) 的合成 111
6.3.6 Tributyl(thiophen-2-yl)stannane (6) 的合成 112
6.3.7 Benzo[c][1,2,5]thiadiazole (7) 的合成 113
6.3.8 4,7-Dibromobenzo[c][1,2,5]thiadiazole (8) 的合成 114
6.3.9 4,7-Di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (9) 的合成 115
6.3.10 4,7-Bis(5-(trimethylstannyl)thiophen-2-yl)benzo[c] [1,2,5]thiadiazole (10) 的合成 116
6.3.11 2,6-Dibromo-4H-cyclopenta[2,1-b:3,4-b']dithiophene (11) 的合成 117
6.3.12 Di-tert-butyl 3,3'-(2,6-dibromo-4H-cyclopenta[2,1-b: 3,4-b']dithiophene-4,4-diyl)dipropionate (12) 的合成 118
6.3.13 2,6-Dibromo-4,4-bis(6-bromohexyl)-4H-cyclopenta [2,1-b:3,4-b']dithiophene (13) 的合成 119
6.4 高分子合成 120
6.4.1 PFNHBocBT 的聚合 120
6.4.2 PFNH3BT 的合成 121
6.4.3 PFNM3BT 的聚合 122
6.4.4 PC3RDFT 的聚合 123
6.4.5 PC3HDFT 的合成 124
6.4.6 PC6BrDFT 的聚合 125
6.4.7 PC8PDFT 的合成 126
6.5 合成反應機制 127
6.5.1 Bromination reaction 127
6.5.2 Alkylation reaction for 9H-fluorene 128
6.5.3 Azides-Staudinger reaction 129
6.5.4 Amine protective group 129
6.5.5 Stille coupling reaction 130
第七章 參考文獻 132
第八章 附錄 139
8.1 1H和13C的核磁共振(NMR)光譜圖 139
8.2 元素分析鑑定書 152
8.3 實驗室同仁貢獻 154
8.3.1 合成PFSO3BT路徑(北科碩士班 周羿伶) 154
8.3.2 合成DFT-tin路徑(北科學士班 陳冠霖) 154
8.3.3 合成MAI路徑(北科碩士班 莊景翔) 156
8.4 電化學阻抗 157
8.5 第三章實驗輔助數據 159
dc.language.isozh-TW
dc.title不同官能基之共軛聚電解質:合成、性質和應用於
p-i-n鈣鈦礦太陽能電池特性分析
zh_TW
dc.titleConjugated Polyelectrolytes with Difference Functional Groups: Synthesis, Properties and Character Analysis in p-i-n Perovskite Solar Cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor王立義(Leeyih Wang)
dc.contributor.oralexamcommittee林唯芳,鄭如忠
dc.subject.keyword鈣鈦礦太陽能電池,電洞傳導層,界面修飾層,共軛聚電解質,zh_TW
dc.subject.keywordPerovskite solar cells,hole transport layer,interlayer,conjugated polyelectrolyte,en
dc.relation.page161
dc.identifier.doi10.6342/NTU201902377
dc.rights.note未授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved