Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21447
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor薛承輝(Chun-Hway Hsueh)
dc.contributor.authorYa-Chu Hsuen
dc.contributor.author許雅筑zh_TW
dc.date.accessioned2021-06-08T03:34:20Z-
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-03
dc.identifier.citation[1] Yeh, J.W. Recent progress in high entropy alloys, Annales de Chimie Science des Matériaux, 2006, 31, 633-648.
[2] Cantor, B. Multicomponent and high entropy alloys. Entropy, 2014, 6, 4749−4768.
[3] Wang, X.; Zhang, Y.; Qiao, Y.; Chen, G. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15, 357−362.
[4] Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013, 61, 2628−2638.
[5] Wu, Y.; Liu, W.; Wang, X.; Ma, D.; Stoica, A.D.; Nieh, T.; He, Z.; Lu, Z. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Applied Physics Letters, 2014, 104, 051910.
[6] He, J.; Liu, W.; Wang, H.; Wu, Y.; Liu, X.; Nieh, T.; Lu, Z. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 2014, 62, 105−113.
[7] Xian, X.; Zhong, Z.H.; Lin, L.J.; Zhu, Z.X.; Chen, C.; Wu, Y.C. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Metals, 2018, 1−7.
[8] Qin, G., Chen, R.; Zheng, H.; Fang, H.; Wang, L.; Su, Y.; Guo, J.; Fu, H. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. Journal of Materials Science and Technology, 2019, 35, 578−583.
[9] Stepanov, N.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M.; Oleynik, E.; Tortika, A.; Senkov, O. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds, 2015, 628, 170−185.
[10] Qin, G.; Li, Z.; Chen, R.; Zheng, H.; Fan, C.; Wang, L.; Su, Y.; Ding, H.; Guo, J.; Fu, H. CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research, 2019, 1−10.
[11] Zhang, Y. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61, 1−93.
[12] Ren, B.; Liu, Z.; Li, D.; Shi, L.; Cai, B.; Wang, M. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution. Materials and Corrosion, 2012, 63, 828−834.
[13] Huang, C.; Zhang, Y.; Shen, J.; Vilar, R. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surface and Coatings Technology, 2011, 206, 1389−1395.
[14] Chen, P.; Lee, C.; Wang, S.Y.; Seifi, M.; Lewandowski, J.J.; Dahmen, K.A.; Jia, H.; Xie, X.; Chen, B.; Yeh, J.W. Fatigue behavior of high-entropy alloys: A review. Science China Technological Sciences, 2018, 61, 168−178.
[15] Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345, 1153−1158.
[16] Cheng, J.; Liang, X.; Xu, B. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surface and Coatings Technology, 2014, 240, 184−190.
[17] Hsu, C.Y.; Sheu, T.S.; Yeh, J.W.; Chen, S.K. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010, 268, 653−659.
[18] Lin, P.C.; Cheng, C.Y.; Yeh, J.W.; Chin, T.S. Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films. Entropy, 2016, 18, 308−316.
[19] Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Materials Chemistry Physics, 2012, 132, 233−238.
[20] Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008, 10, 534−538.
[21] Yang, X.; Zhang, Y.; Liaw, P.K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, Procedia Engineering, 2012, 36, 292−298.
[22] Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid solution phase or amorphous phase. Progress in Natural Science: Materials International, 2011, 21, 433−446.
[23] Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011, 109, 103505.
[24] Zhang, Y,; Zhou, Y.J.; Hui, X.D.; Wang, M.L.; Chen, G.L. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Science China Physics, 2008, 51, 427−437.
[25] Yeh, J.W. Future trends of high-entropy alloys. High-Value Metals Forum, 2013b, Jhongli, Taiwan.
[26] Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction. Prentice Hall, New Jersey, USA, 2011.
[27] Abbaschian, R. Physical Metallurgy Principles. PWS Publishing, Boston, USA, 1994.
[28] Tsai, M.H.; Yeh, J.W. High-entropy alloys: a critical review. Materials Research Letters 2, 2014, 3, 107−123.
[29] Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6, 299−303.
[30] Chen, Y.Y.; Duval, T.; Hong, U.T.; Yeh, J.W.; Shih, H.C.; Wang, L.H,; Oung, J.C. Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288℃ high-purity water. Materials Letters, 2007, 61, 2692−2696.
[31] Zhang, Y.; Zhou, Y.; Hui, X.; Wang, M.; Chen, G. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Science China Physics, Mechanics and Astronomy, 2008, 51, 427−437.
[32] Kittel, C. Introduction to Solid State Physics, 6th ed. New York: John Wiley and Songs, Inc., USA, 1980.
[33] Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics, 2010, 18, 1758−1765.
[34] Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys Compounds, 2011, 509, 6043−6048.
[35] Yeh, J.W.; Chang, S.Y.; Hong, Y.D.; Chen, S.K.; Lin, S.J. Anomalous decrease in X-ray diffraction intensities of CuNiAlCoCrFeSi alloy systems with multi-principal elements. Materials Chemistry Physics, 2007, 103, 1−6.
[36] Ranganathan, S.; Alloyed pleasure: multimetallic cocktails. Current Science, 2003, 85, 1404−1406.
[37] Baptista, A.; Silva F.; Porteiro, J.; Miguez, J.; Pinto, Gustavo. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 2018, 8, 402−423.
[38] Powell, C.F.; Oxley, J.H.; Blocher, J.M. Vapour Deposition, New York: John Wiley and Sons., USA, 1966.
[39] Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing Film Formation, Adhesion, Surface Preparation and Contamination Control. New York: Knovel and Norwich., USA, 1998.
[40] Paiva, J.M.; Gershman, I.; Aramesh, M.; Cavelli, D.; Yamamoto, K.; Dosbaeva, G.; Veldhuis, S. Control of self-organized criticality through adaptive behavior of nano-structured thin film coatings. Entropy, 2016, 18, 290−306.
[41] Hoche, H.; Grob, S.; Oechsner, M. Development of new PVD coatings for magnesium alloys with improved corrosion properties. Surface and Coatings Technology, 2014, 259, 102−108.
[42] Korhonena, H.; Syväluoto, A.; Leskinen, J.T.T.; Lappalainen, R. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition. Optics and Laser Technology, 2018, 98, 373−384.
[43] Kelly, P.J.; Arnell, R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000, 56, 159−172.
[44] Holmberg, K.; Matthews, A. Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed. Elsevier: Amsterdam, The Netherlands, 2009, 576.
[45] Tracton, A.A. Coatings Technology Handbook, 3rd ed. CRC Press: Boca Raton, FL, USA, 2006.
[46] Martin, P.M. Handbook of Deposition Technologies for Films and Coatings, 3rd ed. Elsevier: Amsterdam, The Netherlands, 2010.
[47] Mattox, D.M. The Foundations of Vacuum Coating Technology. Noyes Publications: Norwich, UK, 2003.
[48] Bass, R.B.; Lichtenberger, L.T.; Lichtenberger, A.W. Effects of substrate preparation on the stress of Nb thin films. IEEE Transactions on Applied Superconductivity, 2003, 13, 3298−3300.
[49] Karabacak, T.; Senkevich, J.J.; Wang, G.C.; Lu, T.M. Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures. Journal of Vacuum Science and Technology A, 2005, 23, 986−990.
[50] Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. Journal of Vacuum Science and Tchnology A, 2003, 21, 117−128.
[51] Barna, P. B.; Adamik, M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films, 1998, 317, 27.
[52] Smith, D. A. Atomic Level Structure and Properties. Chapman and Hall, London, 1992, Materials Interfaces, Chap. 6.
[53] C. V. Thompson and R. Carel, Grain Growth in Polycrystalline Thin Films of Semiconductors. Materials Science and Engineering B, 1995, 32, 211−219.
[54] D. W. Pashley, In Epitaxial Growth. 1970, 6, 195.
[55] Baumann, F.H.; Chopp, D.L.; Dı´az de la Rubia, T.; Gilmer, G.H.; Greene, J.E.; Huang, H.; O’Sullivan, S.P.; Kodambaka, I.; Petrov, MRS Bull. Thin Solid Films, 2000, 365.
[56] Braic, M.; Braic, V.; Vladescu, A. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films. Progress in Natural Science, 2014, 24, 305−312.
[57] Shen, W.J.; Tsai, M.H.; Yeh, J.W. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings. Coatings, 2015, 5, 312−325.
[58] An, Z.; Jia, H.; Wu, Y. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters, 2015, 3, 203−209.
[59] Ji, X.; Duan, H.; Zhang, H. Slurry erosion resistance of laser clad NiCoCrFeAl3 high-entropy alloy coatings. Tribology Transaction, 2015, 58, 1119−1123.
[60] Zhang, H.; Wu, W.; He, Y. Formation of core–shell structure in high entropy alloy coating by laser cladding. Applied Surface Science, 2016, 363, 543−547.
[61] Yue, T.; Xie, H.; Lin, X. Microstructure of laser Re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy, 2013, 15, 2833−2845.
[62] Yao, C.Z.; Zhang, P.; Liu, M. Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochimica Acta, 2008, 53, 8359−8365.
[63] Cheng, J.B.; Liang, X.B.; Xu, B.S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surface and Coatings Technology, 2014, 240, 184−190.
[64] Hsueh, H.T.; Shen, W.; Tsai, M.H. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)1001−xNx. Surface and Coatings Technology, 2012, 206, 4106−4112.
[65] Sheng, W.; Yang, X.; Wang, C. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18, 1–7.
[66] Cheng, C.Y.; Yeh, J.W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Materrials Letters, 2016, 185, 456−459.
[67] Lin, P.C.; Cheng, C.Y.; Yeh, J.W. Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films. Entropy, 2016, 18, 308−316.
[68] Yan, X.H.; Li, J.S.; Zhang, W.R. A brief review of high entropy films. Materials Chemistry Physics, 2017, 210, 12−19.
[69] Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Materials Research Letters, 2018, 6, 199−229.
[70] Wu, Z.F.; Wang, X.D.; Cao, Q.P. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x = 0 & 2.5) high-entropy alloy films. Journal of Alloy Compounds, 2014, 609, 137−142.
[71] Gleiter, H. Nanostructured materials: basic concepts and microstructure. Acta Materials, 2000, 48, 1−29.
[72] Rong, Y.H. Phase transformations and phase stability in nanocrystalline materials. Current Opinion in Solid State and Materials Science, 2005, 9, 287−295.
[73] Li, W.; Liu, P.; Ma, F. A thermodynamic explanation for martensitic phase stability of nanostructured Fe–Ni and Co metallic materials. Physica B, 2011, 406, 2540−2542.
[74] Meng, Q.P.; Rong, Y.H.; Hsu, T.Y. Nucleation barrier for phase transformations in nanosized crystals. Physical Review Journals B, 2002, 65, 1−7.
[75] Xiao, F.; Cheng, W.; Jin, X.J. Phase stability in pulse electrodeposited nanograined Co and Fe-Ni. Scripta Materials, 2010, 62, 496−499.
[76] Cheng, K.H.; Lai, C.H,; Lin, S.J. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 2011, 519, 3185−3190.
[77] Feng, X.; Tang, G.; Sun, M. Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multielements alloy thin films. Surface and Coatings Technology, 2013, 228, 424−S427.
[78] Sree Harsha, K.S. Principles of Physical Vapor Deposition of Thin Films, Elsevier Science, Great Britain, 2006.
[79] Mahan, J.E. Physical Vapor Deposition of Thin Films. New York: John Wiley and Sons, 2000.
[80] Braeckman, B.R.; Boydens, F.; Hidalgo, H. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580, 71−76.
[81] Feng, X.; Tang, G.; Gu, L. Preparation and characterization of TaNbTiW multi-element alloy films. Applied Surface Science, 2012, 261, 447−453.
[82] Li, X.; Zheng, Z.; Dou, D. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering. Materials Research, 2016, 19, 802−806.
[83] Chen, T.K.; Shun, T.T,; Yeh, J.W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2004, 188−189, 193−200.
[84] Cheng, K.H.; Lai, C.H.; Lin, S.J.; Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 2011, 519, 3185−3190.
[85] Sun, X.; Zhang, H.; Lu, S.; Ding, X.; Wang, Y. Vitos, L. Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles. Acta Materials, 2017, 140, 366-374.
[86] Wang, J.W.; Zeng, Z.; Weinberger, C.R.; Zhang, Z.; Zhu, T.; Mao, S.X. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centered cubic tungsten. Nature Materials, 2015, 14, 594−600.
[87] Feng, X.B.; Fu, W.; Zhang, J.Y.; Zhao, J.T.; Li, J.; Wu, K.; Liu, G.; Sun, J. Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017, 139, 71−76.
[88] Braeckman, B.; Boydens, F.; Hidalgo, H.; Dutheil, P.; Jullien, M.; Thomann, A.L.; Depla, D. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580, 71−76.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21447-
dc.description.abstract本實驗以Co、Cr、Fe、Mn 及Ni 金屬元素依等比例熔煉成CoCrFeMnNi 高熵合金靶材,利用磁控濺鍍系統分別與Al 及Ti 靶材在Ar 電漿氣氛下製備CoCrFeMnNiAlx (x = 0, 0.07, 0.3, 0.6, 1.0, 1.3, x 為莫耳比) 及 CoCrFeMnNiTix (x = 0, 0.2, 0.4, 0.6, 0.8, x 為莫耳比) 高熵合金薄膜,探討添加Al 及Ti 之合金元素對CoCrFeMnNi 高熵合金薄膜相轉變、微結構及機械性質等影響。根據XRD 及TEM之選區繞射圖(SAED) 結果顯示,當x 為0.6 時,CoCrFeMnNiAlx 高熵合金薄膜之晶體結構從FCC 相轉變成FCC + BCC 雙相結構,隨著鋁含量增加至x = 1.0 時,晶體結構最終相轉變成BCC 相。此趨勢使得CoCrFeMnNiAlx 高熵合金薄膜之硬度隨著鋁含量的增加而有所提升,例如:未添加Al 合金元素時(x = 0),硬度值為5.71GPa,當相轉變成單一BCC 結構時(x = 1.3),硬度值提升至8.74 GPa。然而對CoCrFeMnNiTix 高熵合金薄膜而言,當x 為0 及0.2 時,薄膜呈現柱狀晶結構,且觀察到大量的奈米雙晶。根據選區繞射圖結果可知,在此兩種Ti 含量下(x = 0, 0.2),薄膜之晶體結構為單一FCC 相。隨著鈦含量增加至x = 0.4 時,此薄膜之基底為非晶結構,且有不同結構形成於非晶基底中,例如:奈米晶粒及奈米雙晶,最終當鈦含量增加至x = 0.8 時,此薄膜呈現出非晶結構。因此由此可知,隨著鈦含量的增加,薄膜之晶體結構從FCC 相轉變成非晶結構,同時由奈米壓痕測試結果可得到,硬度值隨著鈦含量的增加從6.62 GPa (x = 0) 提升至8.99 GPa (x = 1.3)。zh_TW
dc.description.abstractThe phase evolution, microstructures and mechanical properties of CoCrFeMnNiAlx (x = 0, 0.07, 0.3, 0.6, 1.0, 1.3 in molar ratio, denoted as Alx hereafter)and CoCrFeMnNiTix (x = 0, 0.2, 0.4, 0.6, 0.8 in molar ratio, denoted as Tix hereafter) high entropy alloy films (HEAFs) were studied in this work. HEAFs were successfully deposited by RF co-sputtering. For CoCrFeMnNiAlx HEAFs, the XRD results indicated the phase transformation from FCC to BCC with the increasing Al content. Also, the corresponding selected area electron diffraction (SAED) patterns proved the phase transition from FCC to duplex phases (FCC + BCC) in Al0.6 and to BCC phase in Al1.0. The hardness value increased from 5.71 GPa in Al0 to 8.74 GPa in Al1.3. The structural transitions from FCC to BCC lead to the hardness enhancement with the increasing Al content. For CoCrFeMnNiTix HEAFs, the Ti0 and Ti0.2 films exhibited the columnar structure and the abundant nanotwins were observed in both films. The corresponding SAED patterns confirmed that the crystalline structure of both films was identified to be a single FCC phase. In Ti0.4, the matrix exhibited an amorphous structure. The
nanocrystalline grains and nanotwins embedded in the amorphous matrix. With further addition of Ti, the Ti0.8 film transformed to an amorphous structure. As a result, there was a phase transition from a single FCC structure to an amorphous structure with the increasing Ti content. Nanoindentation tests showed that the hardness of the films increased from 6.62 GPa in Ti0 to 8.99 GPa in Ti0.8.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:34:20Z (GMT). No. of bitstreams: 1
ntu-108-R06527032-1.pdf: 3914369 bytes, checksum: 26499cc38cc9437e14a55f6b4d6810bf (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝.....................................................2
中文摘要.................................................i
ABSTRACT................................................ii
CONTENTS...............................................iii
LIST OF FIGURES..........................................v
LIST OF TABLES..........................................ix
Chapter 1 Introduction.............................1
Chapter 2 Literature Review........................3
2.1 High-entropy Alloys..............................3
2.1.1 Definition.......................................3
2.1.2 Phase Formation..................................4
2.1.3 Four Core Effects................................7
2.2 Thin Films Introduction ........................16
2.2.1 Definition......................................16
2.2.2 Physical Vapor Deposition (PVD) ................16
2.2.3 Microstructural Evolution during Film Growth....19
2.3 High Entropy Alloy Films ................22
2.3.1 Definition......................................22
2.3.2 Mechanical Properties...........................26
2.4 Summary.........................................27
Chapter 3 Experimental Procedures................ 29
3.1 Experimental Flow...............................29
3.2 Deposition process..............................31
3.3 Analysis equipment..............................32
3.3.1 Electron Probe X-ray Microanalyzer (EPMA).......32
3.3.2 X-ray Diffraction (XRD).........................32
3.3.3 Scanning Electron Microscope (SEM)..............33
3.3.4 Transmission Electron Microscope (TEM)..........33
3.3.5 Nanoindentation.................................33
Chapter 4 Results and Discussion..................34
4.1 CoCrFeMnNiAlx HEAFs.............................34
4.1.1 EPMA Results....................................34
4.1.2 XRD Results.....................................34
4.1.3 Atomic Size Difference..........................36
4.1.4 Surface Observation.............................38
4.1.5 TEM Observation.................................39
4.1.6 Mechanical Properties...........................42
4.2 CoCrFeMnNiTix HEAFs.............................44
4.2.1 EPMA Results....................................44
4.2.2 XRD Results.....................................45
4.2.3 Atomic Size Difference..........................46
4.2.4 Surface Observation.............................47
4.2.5 TEM Observation.................................48
4.2.6 Mechanical Properties...........................52
Chapter 5 Conclusions.............................54
References..............................................56
Appendix................................................66
dc.language.isozh-TW
dc.title"添加合金元素(Al, Ti)對於CoCrFeMnNi 高熵合金薄膜微結構
及機械性質之影響"
zh_TW
dc.titleEffects of alloying elements (Al, Ti) addition on microstructures
and mechanical properties of CoCrFeMnNi high entropy
alloy films
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊哲人(Jer-Ren Yang),陳士勛(Shih-Hsun Chen)
dc.subject.keyword高熵合金薄膜,磁控濺鍍,添加鋁,添加鈦,微結構,機械性質,zh_TW
dc.subject.keywordHigh entropy alloy films,Magnetron sputtering,Al addition,Ti addition,Microstructure,Mechanical properties,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201902422
dc.rights.note未授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
3.82 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved