Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓
dc.contributor.authorTsz-Yeung Wongen
dc.contributor.author黃子楊zh_TW
dc.date.accessioned2021-06-08T03:34:07Z-
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation林榕華、邱慧珍。1993。溫度與乙烯處理對番茄果實後熟的影響。農林學報。3: 39-54頁。
張振厚, 鄭榮瑞、鍾瑞永。2002。番茄機械嫁接技術。臺南區農業專訊。42: 1-6頁。
許秀惠、安寶貞。1995。台灣農家要覽農作篇 (三)。行政院農業委員會。181頁。
王喻其、鄭瑋瑄、陳富翔、王智屏、陳妙帆、費雯綺。2016。植物保護手冊。1-3頁。
劉依昌。2012。臺南區農業改良場小果番茄的研發與推廣。臺南區農業專訊。79: 29-33頁。
劉依昌。2017。台灣番茄的品種演進及迷思。科學發展。533: 42-47頁。
劉依昌、黃瑞彰、蔡孟旅、黃秀雯。2016。小果番茄設施栽培及健康管理技術。臺南區農業改良場技術專刊。3: 21頁。
劉依昌、謝明憲、黃瑞彰、林經偉、林棟樑、王仕賢。2011。設施番茄之養液土耕栽培技術。豐年半月刊。203: 32-34頁。
劉益宏、黃健瑞、林玉儒、陳昭瑩。2008。利用植物免疫力防治病害的現況與展望。節能減碳與作物病害管理研討會專刊。193-202。
蕭旭峰、陳啟予、徐玲明、鄧汀欽、陳淑佩、方尚仁、張瑞璋。2013。臺灣農作物有害生物資料庫簡介。農業生技產業季刊。35: 39-48頁。
Angulo, C., M. d. l. O. Leyva, I. Finiti, J. López-Cruz, E. Fernández-Crespo, P. García-Agustín, and C. González-Bosch. 2015. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Journal of Plant Physiology. 175: 163-173.
Bakker, P. A., C. M. Pieterse, and L. Van Loon. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology. 2: 239-243.
Baldwin, I. T., R. Halitschke, A. Paschold, C. C. Von Dahl, and C. A. Preston. 2006. Volatile signaling in plant-plant interactions:' talking trees' in the genomics era. Science. 5762: 812-815.
Bari, R., and J. D. Jones. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology. 4: 473-488.
Bartz, J. A., S. A. Sargent, and M. Mahovic. 2013. Guide to identifying and controlling postharvest tomato diseases in Florida. Document of the Horticultural Sciences Department. Institute of Food and Agricultural Sciences, University of Florida.
Bengtsson, T., D. Weighill, E. Proux-Wéra, F. Levander, S. Resjö, D. D. Burra, L. I. Moushib, P. E. Hedley, E. Liljeroth, and D. Jacobson. 2014. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15: 315.
Bennett, R. N., and R. M. Wallsgrove. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist. 4: 617-633.
Caten, C., and J. Jinks. 1968. Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany. 4: 329-348.
Conrath, U., O. Thulke, V. Katz, S. Schwindling, and A. Kohler. 2001. Priming as a mechanism in induced systemic resistance of plants. European Journal of Plant Pathology 107: 113-119.
Conrath, U., C. M. Pieterse, and B. Mauch-Mani. 2002. Priming in plant–pathogen interactions. Trends in Plant Science. 7: 210-216.
Davies, P. J. 2010. The plant hormones: their nature, occurrence, and functions. Plant hormones. Springer. pp. 1-15
Esterhuizen-Londt, M., S. Pflugmacher, and T. Downing. 2011. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum. Toxicon. 5: 803-810.
English, J., J. Bonner, and A. Haagen-Smit. 1939. Structure and synthesis of a plant wound hormone. Science. 90: 329.
Farmer, E. E. 1994. Fatty acid signalling in plants and their associated microorganisms. Signals and Signal Transduction Pathways in Plants. Springer. 26: 1423-1437
Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology. 2: 309-314.
Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology. 2: 315-318.
Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 2: 109-117.
Granke, L., and M. Hausbeck. 2010. Effects of temperature, concentration, age, and algaecides on Phytophthora capsici zoospore infectivity. Plant Disease. 1: 54-60.
Guo, J., C. Jiang, P. Xie, Z. Huang, and Z. Fa. 2015. The plant healthy and safety guards plant growth promoting rhizobacteria (PGPR). Transcriptomics 3: 2.
Haagen‐Smit, A., W. Leech, and W. Bergren. 1942. The estimation, isolation, and identification of auxins in plant materials. American Journal of Botany. 7: 500-506.
Hayat, S., B. Ali, and A. Ahmad. 2007. Salicylic acid: biosynthesis, metabolism and physiological role in plants. Salicylic acid: A plant hormone. Springer. pp. 1-14.
Jenkins, J. A. 1948. The origin of the cultivated tomato. Economic Botany. 4: 379-392.
Joseph, B., R. Ranjan Patra, and R. Lawrence. 2012. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.) . International Journal of Plant Production. 2: 141-152.
Kato, M., and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany. 4: 729-735.
Kloepper, J. W., R. Lifshitz, and R. M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology. 2: 39-44.
Latijnhouwers, M., W. Ligterink, V. G. A. A. Vleeshouwers, P. Van West, and F. Govers. 2004. A Gα subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Molecular Microbiology. 4: 925-936.
Leyva, M., B. Vicedo, I. Finiti, V. Flors, G. Del Amo, M. Real, P. García‐Agustín, and C. González‐Bosch. 2008. Preventive and post‐infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathology. 6: 1038-1046.
Lin, T., G. Zhu, J. Zhang, X. Xu, Q. Yu, Z. Zheng, Z. Zhang, Y. Lun, S. Li, and X. Wang. 2014. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics. 11: 1220.
Llorens, E., G. Camañes, L. Lapeña, and P. García-Agustín. 2016. Priming by hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles. Frontiers in Plant Science. 495.
Llorens, E., L. Scalschi, E. Fernández-Crespo, L. Lapena, and P. García-Agustín. 2015. Hexanoic acid provides long-lasting protection in ‘Fortune’mandarin against Alternaria alternata. Physiological and Molecular Plant Pathology. 38-45.
Manorantitham, S., V. Prakasam, and K. Rajappan. 2012. Biocontrol of damping off of tomato caused by Pythium aphanidermatum. Indian Phytopathology. 1: 59-61.
Meissner, R., Y. Jacobson, S. Melamed, S. Levyatuv, G. Shalev, A. Ashri, Y. Elkind, and A. Levy. 1997. A new model system for tomato genetics. The Plant Journal. 6: 1465-1472.
Milling, A., L. Babujee, and C. Allen. 2011. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLOS One. 1: e15853.
Morales, P., J. Calzada, E. Fernández-García, and M. Núñez. 2006. Free fatty acids in model cheeses made with a Micrococcus sp. INIA 528 milk culture or with a high enzymatic activity curd of this strain. International Dairy Journal. 7: 784-787.
Muller, C. H. 1940. A revision of the genus Lycopersicon. US Department of Agriculture. pp 8-16
Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 5: 867-880.
Nürnberger, T., F. Brunner, B. Ke mmerling, and L. Piater. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews. 1: 249-266.
Okon, Y., and C. A. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry 12: 1591-1601.
Onesirosan, P., and T. Fatunla. 1976. Fungal fruit rots of tomatoes in southern Nigeria. Journal of Horticultural Science. 4: 473-479.
Ongena, M., E. Jourdan, A. Adam, M. Paquot, A. Brans, B. Joris, J. L. Arpigny, and P. Thonart. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology. 4: 1084-1090.
Opina, N., F. Tavner, G. Hollway, J. Wang, T. Li, R. Maghirang, M. Fegan, A. Hayward, V. Krishnapillai, and W. Hong. 1997. A novel method for development of species and strain-specific DNA proves and PCR primers for identifying Burkholderia Solanacearum (formerly Pseudomonas Solanacearum) . Asia-Pacific Journal of Molecular Biology and Biotechnology. 5: 19-30
Peralta, I. E., D. M. Spooner, M. Razdan, and A. Mattoo. 2006. History, origin and early cultivation of tomato (Solanaceae) . Genetic Improvement of Solanaceous Crops. 2:6-7.
Peterson, D., and G. Reineccius. 2003. Characterization of the volatile compounds that constitute fresh sweet cream butter aroma. Flavour and Fragrance Journal 3: 215-220.
Pieterse, C. M., A. Leon-Reyes, S. Van der Ent, and S. C. Van Wees. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology. 5: 308.
Ranc, N., S. Muños, S. Santoni, and M. Causse. 2008. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biology. 1: 130.
Rick, C. M. 1960. Hybridization between Lycopersicon esculentum and Solanum pennellii: phylogenetic and cytogenetic significance. Proceedings of the National Academy of Sciences USA. 1: 78-82.
Rick, C. M. 1978. The Tomato. Scientific American 239: 76-89.
Rick, C. M., and L. Butler. 1956. Cytogenetics of the tomato. Advances in Genetics. 8: 267-382.
Rivard, C., S. O'connell, M. Peet, R. Welker, and F. Louws. 2012. Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Disease. 7: 973-978.
Saharan, B., and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research 21: 30.
Scalschi, L., B. Vicedo, G. Camañes, E. Fernandez‐Crespo, L. Lapeña, C. González‐Bosch, and P. García‐Agustín. 2013. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Molecular Plant Pathology. 4: 342-355.
Tomkins, R. 1963. The effects of temperature, extent of evaporation, and restriction of ventilation on the storage life of tomatoes. Journal of Horticultural Science 38: 335-347.
United States Department of Agriculture, Agricultural Marketing Service, United Fresh Fruit and Vegetable Association, Fruit and Vegetable Division. 1975. Color classification requirements in United States Standards for grades of fresh tomatoes.
Shah, J. 2003. The salicylic acid loop in plant defense. Current Opinion in Plant Biology. 4: 365-371.
Smith, A. F. 2001. The tomato in America: early history, culture, and cookery. University of Illinois Press. pp 3-18
Soufleros, E., S. Mygdalia, and P. Natskoulis. 2005. Production process and characterization of the traditional Greek fruit distillate “Koumaro” by aromatic and mineral composition. Journal of Food Composition and Analysis 7: 699-716.
Stinson, M., D. Ezra, W. M. Hess, J. Sears, and G. Strobel. 2003. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Science. 4: 913-922.
Thelen, J. J., and J. B. Ohlrogge. 2002. Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering. 1: 12-21.
Upchurch, R. G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters. 6: 967-977.
Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal. 3: 681-692.
Yang, J., C. Sun, Y. Zhang, D. Fu, X. Zheng, and T. Yu. 2017. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata. Food Chemistry 221: 1014-1020.
Zabetakis, I., A. Koulentianos, E. Orruno, and I. Boyes. 2000. The effect of high hydrostatic pressure on strawberry flavour compounds. Food Chemistry. 1: 51-55.
Zhao, J., L. C. Davis, and R. Verpoorte. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances. 4: 283-333.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21439-
dc.description.abstract番茄為茄科 (Solanaceae)茄屬 (Solanum) 之草本植物,是重要的世界性果菜兩用作物,因此其大部分病蟲害防治技術都相當成熟,但目前仍有部分病害難以利用現有的技術防治,而只能利用綜合病蟲害管理 (Integrated Pest Management, IPM) 來達到管控病蟲害的目的。利用己酸作為誘導物使植物產生誘導抗性是一種對環境友善的方式,而且便於與各種防治技術結合。本研究以對峙培養測試了己酸對青枯病菌 (Ralstonia solanacearum)和腐黴菌 (Pythium aphanidermatum) 於培養基上的抑菌效果,並確認其抑菌效果是來自於己酸的酸性,並測試番茄幼苗對己酸之可接受濃度達到1000 ppm 而於7天內未有任何不良的影響。另外以盆栽試驗測試預先施用己酸對接種以上兩種病原菌之防治效果,當中在青枯病的防治上較為明顯,而在試驗中也發現己酸對初次接種病原菌的保護效果可長達21天,而且發現提早施用己酸對兩種病害都能更有效的降低其罹病度。在果實上施用己酸浸泡處理能有助減緩腐黴菌和鏈格孢菌在果實上的生長,在植株採樣中也發現己酸處理使接種病害的組別有更高的抗氧化酵素活性,與活性氧 (ROS) 染色之結果互相呼應,證明己酸對番茄的保護效果是基於對植株的誘導抗性。結果表明己酸是一種可誘導番茄對青枯病及幼苗猝倒病產生抗性,且具長效的保護劑,己酸誘導抗性於番茄幼苗上具有作為植物疫苗的潛力,達到降低感病性,減少其他農業藥劑的使用。zh_TW
dc.description.abstractTomato (Solanum lycopersicum) is a herbaceous plant of Solanaceae family, and an important world-wide crop. Even though most of its pest control technologies have been well developed, some diseases are still difficult to prevent and control. Only the use of Integrated Pest Management (IPM) may help achieve the end-goal of controlling such pests and diseases. Elicitation of plant resistance by hexanoic acid is an environmentally friendly method that can be easily combined with various techniques to effectively control pests. In this study, the antimicrobial effect of Hexanoic acid on Ralstonia solanacearum and Pythium aphanidermatum on the medium was tested and the bacteriostatic effect on Ralstonia solanacearum was determined to be the acidity of the hexanoic acid. The acceptable hexanoic acid concentration of the tomato seedlings was 1000 ppm, which did not have any adverse effects within 7 days. A pot experiment was conducted to test the control effect of pre-administered hexanoic acid on the above two pathogens, among which the control of bacterial wilt was more obvious. It was found that the protection of hexanoic acid on the first inoculation of pathogen can last for 21 days, and that early administration of hexanoic acid can effectively reduce the disease severity of both diseases. Also, application of hexanoic acid on tomato fruits can help slow the growth of Pythium sp. and Alternaria sp. on the fruit. Hexanoic acid treatment induced higher levels of antioxidant enzyme activity to the inoculated disease group, similar to the results of reactive oxygen species (ROS) staining which proves that protection of tomato by hexanoic acid is due to the induced resistance in plants. The results indicate that hexanoic acid is a long-acting protective agent. Hexanoic acid-induced resistance has the potential to be developed into a plant vaccine on tomato seedlings, reducing disease susceptibility and the use of other chemical reagents.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:34:07Z (GMT). No. of bitstreams: 1
ntu-108-R06645001-1.pdf: 8348415 bytes, checksum: e092b1c2de9dcc26bfb67ffd9590d455 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目 錄
口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
前言 1
(一) 番茄的起源 1
(二) 番茄栽培及食用歷史 1
(三) 番茄的分類學地位 2
(四) 臺灣番茄的栽培情況 2
(五) 臺灣番茄的栽培模式 3
(六) 臺灣番茄的品種及育種 4
(七) 番茄的採收、貯藏 9
(八) 臺灣番茄的病害及其防治 12
(九) 植物的防禦機制及誘導抗性 16
(十) 脂肪酸於植物體內的生理作用及應用 19
(十一) 己酸對植物誘導抗性之相關研究及利用 21
研究目的 24
材料方法 25
(一) 供試菌株 25
(二) 植物材料 27
(三) 己酸於培養基上對病原菌之抑制試驗 27
(四) 番茄對己酸之耐受性及藥害試驗 30
(五) 不同濃度下己酸誘導番茄植株抗性對抗病害的防治試驗 30
(六) 己酸保護效果的持效性試驗 32
(七) 己酸對於不同年齡番茄植株對抗病害的防治試驗 35
(八) 不同濃度下己酸處理番茄果實對抗果實病害之試驗 37
(九) 檢定己酸對番茄幼苗誘導抗性之試驗 40
(十) 防禦相關酵素之活性分析 41
(十一) 活性氧ROS之染色 45
(十二) 統計分析 46
結果與討論 49
(一) 供試菌株 49
(二) 己酸於培養基上對病原菌之抑制試驗 54
(三) 番茄對己酸之耐受性及藥害試驗 61
(四) 不同濃度下己酸誘導番茄植株抗性對抗病害的防治效果 64
(五) 己酸保護效果的持效性 67
(六) 己酸對於不同年齡番茄植株對抗病害的防治效果 71
(七) 不同濃度下己酸處理番茄果實對果實病害之試驗 75
(八) 防禦相關酵素之活性分析 78
(九) 活性氧ROS之染色 86
結論 92
參考文獻 93
dc.language.isozh-TW
dc.title己酸誘導抗性對番茄抗病害之防治研究zh_TW
dc.titleApplication of Hexanoic Acid Induced Resistance for Controlling Tomato Diseasesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪挺軒,林乃君,陳玟瑾
dc.subject.keyword番茄 (Tomato),己酸 (Hexanoic acid),番茄青枯病 (Tomato bacterial wilt),番茄幼苗猝倒病 (Tomato damping off),誘導抗性 (Induced resistance),zh_TW
dc.subject.keywordTomato,Hexanoic acid,Tomato bacterial wilt,Tomato damping off,Induced resistance,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201902557
dc.rights.note未授權
dc.date.accepted2019-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物醫學碩士學位學程zh_TW
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved