Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊嘉揚(Jia-Yang Juang)
dc.contributor.authorYing Linen
dc.contributor.author林穎zh_TW
dc.date.accessioned2021-06-08T03:33:56Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation[1] A. Arienti, M. Calisti, F. Giorgio-Serchi, and C. Laschi, “PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–7, 2013.
[2] S. Seok, C. D. Onal, K. Cho, R. J. Wood, D. Rus, and S. Kim, “Meshworm : A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 5, pp. 1485–1497, 2013.
[3] R. F. Shepherd et al., “Multigait soft robot,” Proc. Natl. Acad. Sci., vol. 108, no. 51, pp. 20400–20403, 2011.
[4] E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that navigates its environment through growth,” Sci. Robot., vol. 2, no. 8, p. eaan3028, Jul. 2017.
[5] A. M. Bertetto and M. Ruggiu, “In-pipe inch-worm pneumatic flexible robot,” 2001 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics. Proc. (Cat. No.01TH8556), no. July, pp. 1226–1231, 2001.
[6] M. S. Verma, A. Ainla, D. Yang, D. Harburg, and G. M. Whitesides, “A Soft Tube-Climbing Robot,” Soft Robot., vol. 5, no. 2, p. soro.2016.0078, 2017.
[7] A. A. Calderon, J. C. Ugalde, J. C. Zagal, and N. O. Perez-Arancibia, “Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms,” 2016 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2016, pp. 31–38, 2016.
[8] W. Adams, S. Sridar, C. M. Thalman, B. Copenhaver, H. Elsaad, and P. Polygerinos, “Water pipe robot utilizing soft inflatable actuators,” 2018 IEEE Int. Conf. Soft Robot. RoboSoft 2018, pp. 321–326, 2018.
[9] J. Lim, H. Park, J. An, Y. S. Hong, B. Kim, and B. J. Yi, “One pneumatic line based inchworm-like micro robot for half-inch pipe inspection,” Mechatronics, vol. 18, no. 7, pp. 315–322, 2008.
[10] J. O. Alcaide, L. Pearson, and M. E. Rentschler, “Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4338–4345, 2017.
[11] M. Ono and S. Kato, “A study of an earthworm type inspection robot movable in long pipes,” Int. J. Adv. Robot. Syst., vol. 7, no. 1, pp. 85–90, 2010.
[12] K. Adachi, M. Yokojima, Y. Hidaka, and T. Nakamura, “Development of multistage type endoscopic robot based on peristaltic crawling for inspecting the small intestine,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, pp. 904–909, 2011.
[13] A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, and K. Bertoldi, “Kirigami skins make a simple soft actuator crawl,” Sci. Robot., vol. 3, no. 15, p. eaar7555, 2018.
[14] A. Singh, E. Sachdeva, A. Sarkar, and K. M. Krishna, “COCrIP: Compliant OmniCrawler in-pipeline robot,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017–Septe, pp. 5587–5593, 2017.
[15] T. Takayama, H. Takeshima, T. Hori, and T. Omata, “A Twisted Bundled Tube Locomotive Device Proposed for In-Pipe Mobile Robot,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2915–2923, 2015.
[16] M. Aoki and J. Y. Juang, “Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling,” R. Soc. Open Sci., vol. 5, no. 2, 2018.
[17] C. Y. Yeh, S. C. Chou, H. W. Huang, H. C. Yu, and J. Y. Juang, “Tube-crawling soft robots driven by multistable buckling mechanics,” Extrem. Mech. Lett., vol. 26, pp. 61–68, 2019.
[18] F. Connolly, P. Polygerinos, C. J. Walsh, and K. Bertoldi, “Mechanical Programming of Soft Actuators by Varying Fiber Angle,” Soft Robot., vol. 2, no. 1, pp. 26–32, 2015.
[19] F. Daerden and D. Lefeber, “The concept and design of pleated pneumatic artificial muscles,” Int. J. Fluid Power, vol. 2, no. 3, pp. 41–50, 2001.
[20] F. Daerden, D. Lefeber, F. Daerden, and D. Lefeber, “Pneumatic artificial muscles: actuators for robotics and automation,” Eur. J. Mech. Environ. Eng., vol. 47, no. 1, pp. 11–21, 2002.
[21] B. Gorissen, T. Chishiro, S. Shimomura, M. De Volder, D. Reynaerts, and S. Konishi, “Flexible pneumatic twisting actuators,” 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sensors, Actuators Microsystems, TRANSDUCERS EUROSENSORS 2013, no. June, pp. 1687–1690, 2013.
[22] S. K. Mitchell, N. Kellaris, C. Keplinger, G. M. Smith, and V. Gopaluni Venkata, “Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation,” Sci. Robot., vol. 3, no. 14, p. eaar3276, 2018.
[23] Q. Pei, J. Joseph, R. Kornbluh, and R. Pelrine, “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%,” Science (80-. )., vol. 287, no. 5454, pp. 836–839, 2000.
[24] B. Jenett et al., “Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures,” Soft Robot., vol. 4, no. 1, pp. 33–48, 2017.
[25] A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, and M. Shtein, “Dynamic kirigami structures for integrated solar tracking,” Nat. Commun., vol. 6, p. 8092, 2015.
[26] J. Shintake, S. Rosset, B. E. Schubert, D. Floreano, and H. R. Shea, “A Foldable Antagonistic Actuator,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 1997–2008, 2015.
[27] Y. L. Park, B. R. Chen, and R. J. Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sens. J., vol. 12, no. 8, pp. 2711–2718, 2012.
[28] Y.-L. Park and R. J. Wood, “Smart Pneumatic Artificial Muscle Actuator with Embedded Microfluidic Sensing,” 2013 Ieee Sensors, pp. 689–692, 2013.
[29] W. Felt and C. D. Remy, “Smart braid: Air muscles that measure force and displacement,” IEEE Int. Conf. Intell. Robot. Syst., no. Iros, pp. 2821–2826, 2014.
[30] M. Schaffner, J. A. Faber, L. Pianegonda, P. A. Rühs, F. Coulter, and A. R. Studart, “3D printing of robotic soft actuators with programmable bioinspired architectures,” Nat. Commun., vol. 9, no. 1, 2018.
[31] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Dynamic control of soft robots interacting with the environment,” 2018 IEEE Int. Conf. Soft Robot. RoboSoft 2018, pp. 46–53, 2018.
[32] C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, “Soft mobile robots with on-board chemical pressure generation,” Springer Tracts Adv. Robot., vol. 100, pp. 525–540, 2017.
[33] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015.
[34] S. Li, D. M. Vogt, D. Rus, and R. J. Wood, “Fluid-driven origami-inspired artificial muscles,” Proc. Natl. Acad. Sci., vol. 114, no. 50, pp. 13132–13137, 2017.
[35] F. Connolly, C. J. Walsh, and K. Bertoldi, “Automatic design of fiber-reinforced soft actuators for trajectory matching,” Proc. Natl. Acad. Sci., vol. 114, no. 1, pp. 51–56, 2017.
[36] B. Mosadegh et al., “Pneumatic networks for soft robotics that actuate rapidly,” Adv. Funct. Mater., vol. 24, no. 15, pp. 2163–2170, 2014.
[37] J. Ou et al., “aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design,” Proc. 29th Annu. Symp. User Interface Softw. Technol. - UIST ’16, pp. 121–132, 2016.
[38] Z. Jiao, C. Ji, J. Zou, H. Yang, and M. Pan, “Vacuum-Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots,” Adv. Mater. Technol., vol. 4, no. 1, pp. 1–10, 2019.
[39] T. Kalisky et al., “Differential pressure control of 3D printed soft fluidic actuators,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017–Septe, pp. 6207–6213, 2017.
[40] H. Jiang, X. Liu, X. Chen, Z. Wang, Y. Jin, and X. Chen, “Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks,” 2016 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2016, pp. 350–356, 2016.
[41] G. Kovacs, L. Düring, S. Michel, and G. Terrasi, “Stacked dielectric elastomer actuator for tensile force transmission,” Sensors Actuators, A Phys., vol. 155, no. 2, pp. 299–307, 2009.
[42] C. Christianson, N. N. Goldberg, D. D. Deheyn, S. Cai, and M. T. Tolley, “Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators,” Sci. Robot., vol. 3, no. 17, p. eaat1893, 2018.
[43] M. Taghavi, T. Helps, and J. Rossiter, “Electro-ribbon actuators and electro-origami robots,” Sci. Robot., vol. 3, no. 25, p. eaau9795, Dec. 2018.
[44] A. Poulin, S. Rosset, and H. R. Shea, “Printing low-voltage dielectric elastomer actuators,” Appl. Phys. Lett., vol. 107, no. 24, 2015.
[45] R. Pelrine et al., “Dielectric elastomers: generator mode fundamentals and applications,” no. July 2001, p. 148, 2001.
[46] C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, “Capacitive extensometry for transient strain analysis of dielectric elastomer actuators,” Appl. Phys. Lett., vol. 92, no. 19, pp. 1–4, 2008.
[47] M. Duduta, D. R. Clarke, and R. J. Wood, “A high speed soft robot based on dielectric elastomer actuators,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 4346–4351.
[48] G. Gu, J. Zou, R. Zhao, X. Zhao, and X. Zhu, “Soft wall-climbing robots,” Sci. Robot., vol. 3, no. 25, p. eaat2874, Dec. 2018.
[49] M. Cianchetti, A. Licofonte, M. Follador, F. Rogai, and C. Laschi, “Bioinspired Soft Actuation System Using Shape Memory Alloys,” Actuators, vol. 3, no. 3, pp. 226–244, 2014.
[50] Y. Sugiyama and S. Hirai, “Crawling and jumping of deformable soft robot,” 2004 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IEEE Cat. No.04CH37566), vol. 4, no. c, pp. 3276–3281, 2004.
[51] A. S. Boxerbaum, K. M. Shaw, H. J. Chiel, and R. D. Quinn, “Continuous wave peristaltic motion in a robot,” Int. J. Rob. Res., vol. 31, no. 3, pp. 302–318, 2012.
[52] M. Calisti et al., “An octopus-bioinspired solution to movement and manipulation for soft robots,” Bioinspiration and Biomimetics, vol. 6, no. 3, 2011.
[53] M. P. Nemitz, P. Mihaylov, T. W. Barraclough, D. Ross, and A. A. Stokes, “Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example,” Soft Robot., vol. 3, no. 4, pp. 198–204, 2016.
[54] W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, “Small-scale soft-bodied robot with multimodal locomotion,” Nature, vol. 554, no. 7690, pp. 81–85, 2018.
[55] J. P. King, L. E. Valle, N. Pol, and Y. L. Park, “Design, modeling, and control of pneumatic artificial muscles with integrated soft sensing,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4985–4990, 2017.
[56] Ching-Ping Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Trans. Robot. Autom., vol. 12, no. 1, pp. 90–102, 1996.
[57] T. Doi, S. Wakimoto, K. Suzumori, and K. Mori, “Proposal of flexible robotic arm with thin McKibben actuators mimicking octopus arm structure,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2016–Novem, pp. 5503–5508, 2016.
[58] H. T. Tramsen, S. N. Gorb, H. Zhang, P. Manoonpong, Z. Dai, and L. Heepe, “Inversion of friction anisotropy in a bioinspired asymmetrically structured surface,” J. R. Soc. Interface, vol. 15, no. 138, 2018.
[59] Ninjatek, “technical specs.” [Online]. Available: https://ninjatek.com/tech-specs/.
[60] I. Smooth-On, “EcoflexTM Series, Super-Soft, Addition Cure Silicone Rubbers.” [Online]. Available: https://www.smooth-on.com/product-line/ecoflex/.
[61] I. Smooth-On, “EcoflexTM 00-30 Product Information.” .
[62] L. Muneta Gomu Co., “Neo-rubber tubing.” [Online]. Available: ttps://www.muneta-net.com/en/products.html.
[63] 郁冠工業有限公司, “DC-18VD - 無油式真空幫浦.” [Online]. Available: http://www.unicrown.com.tw/prodDetail.asp?id=183.
[64] “KPM14A DC 3V Mini Air Pump Motor for Aquarium Tank Oxygen Circulate.” [Online]. Available: https://www.amazon.co.uk/KPM14A-Motor- Aquarium-Oxygen-Circulate/dp/B01F0T39N0.
[65] N. E. P. Systems and I. Smooth-On, “NE-1000 Programmable Single Syringe Pump.” [Online]. Available: http://www.syringepump.com/NE-1000.php.
[66] AirTAC, “3V2_Solenoid_valve.pdf.” [Online]. Available: http://www.suomentehdaspalvelu.fi/Tiedostot/tiedostot/3V2_Solenoid_valve.pdf.
[67] Arduino, “ARDUINO UNO REV3.” [Online]. Available: https://store.arduino.cc/usa/arduino-uno-rev3.
[68] N. Freescale, “MPX5500 Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated.” [Online]. Available: available: https://www.nxp.com/docs/en/data-%0A sheet/MPX5500.pdf.
[69] I. Electronics, “2010-10-26-DataSheet-FSR400-Layout2.pdf.” [Online]. Available: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21433-
dc.description.abstract使用軟材料來製作機器人或是機器人零件在未來有很大的潛力。在我們研究中我們設計與製造了一種新型態的軟性機器人,其用途是可以在圓管管路中移動。在過去的大部份的爬管軟性機器人研究都用到了三節或三節以上的氣囊結構與驅動器來爬行。我們研究有別於過去的這種結構設計,我們僅使用單節r結構與單一曲動器來進行管內爬行,這樣能降低設氣壓設備數量、成本及複雜度。為了達到上述的效果,我們設計了一種長條形彈性薄片結構,透過壓縮薄片成特定形狀在釋放的過程帶動機器人移動,最終我們的機構達到能穩定爬行、垂直向上爬行、適應不同管徑與克服簡單彎道的效果。zh_TW
dc.description.abstractConstituting robot with soft materials and complaint components has great potential in future robot design. In this thesis, we present a new type of soft robot which can crawl in the pipeline structure. Most of existing tube-crawling soft robot had three or more segments and actuators. Unlike previous research, we build up our robot with only one segment and one pneumatic actuator that lower the number, price and complexity of pneumatic equipment. To achieve this goal, we design a special elastic ribbon (stripe) structure. When the actuator compress and release these ribbons in the pipe, the deformation of ribbons propel the robot forward. Finally, Our robot achieve stable crawling, climbing vertical tube, diameter adaptability and turning in some types of elbow.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:33:56Z (GMT). No. of bitstreams: 1
ntu-108-R06522523-1.pdf: 6640930 bytes, checksum: d747c18ce53fce3a02881bd98c2897a3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
摘要 II
目錄 III
圖片目錄 V
表目錄 VII
符號表 VII
CHAPTER 1 緒論 1
1.1 簡介與動機 1
1.2 主要目標: 3
1.3 論文摘要 3
CHAPTER 2 文獻回顧 4
2.1 軟性機器人 4
2.2 軟性機器人驅動方式 5
2.3 軸向變形氣壓驅動器 10
2.3.1 Mckibben氣壓驅動器運作原理 12
2.4 軟性機器於圓管中移動的研究 13
2.5 實驗室研究回顧 16
2.6 設計靈感來源 18
CHAPTER 3 實驗設備與材料 20
3.1 製造方法 20
3.1.1 3D列印 20
3.2.2 矽膠灌模 22
3.2 製作材料 24
3.2.1 NinjaFlex ( TPU, 人工橡膠) 24
3.2.2 Ecoflex 00-30 25
3.2.3 橡膠管 26
3.2.4 PDMS 26
3.3 實驗設備 27
3.3.1 氣壓幫浦 27
3.3.2 電磁閥 29
3.3.3 Arduino UNO 30
3.3.4 氣壓感測器及壓力感測器 31
CHAPTER 4 軟性爬管機器人設計 34
4.1 運動原理 34
4.1.1 構想與整體設計流程 34
4.1.2 基本運動流程 36
4.1.3 設計優缺點 38
4.2 機構設計 39
4.2.1 全零件概述 39
4.2.2 薄片結構 41
4.2.3 摩擦力橡膠套 44
4.2.4 Mckibben氣壓驅動器 45
4.2.5 鏈結 47
4.3 電路與氣壓路徑 48
4.3.1 電路與氣壓架構 48
4.3.2 電路 49
4.4 有限元素軟體模擬 50
4.4.1 薄片壓縮變形模擬 50
4.4.2 薄片壓縮觸牆變形模擬 51
CHAPTER 5 結果與討論 54
5.1主要測量環境與摩擦力 54
5.1.1 靜摩擦係數 54
5.1.2 薄片傾斜面斜面摩擦力量測與正向力變化量測 56
5.2 前進平均速度 58
5.2.1 直線爬行速度量測與週期參數調整 58
5.2.2 不同管徑下爬行距離與有限元素軟體預測 60
5.3氣體壓力量測 63
5.4彎道 66
5.4.1 彎頭類型與設計 66
5.4.2 90°的平滑彎管及45°度一般彎頭 68
5.5 氣管長度對效能影響 72
CHAPTER 6 結論與未來展望 74
參考文獻 76
dc.language.isozh-TW
dc.title單驅動器軟性爬管機器人zh_TW
dc.titleSingle-Actuator Soft Robot for In-pipe Travelingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明蒼(Ming-Tsang Lee),蔡佳霖(Jia-Lin Tsai),楊燿州(Yao-Joe Joseph Yang)
dc.subject.keyword軟性機器人,管路內,薄片,單驅動器,氣壓驅動,爬行,zh_TW
dc.subject.keywordSoft Robot,In-Pipe,Ribbon,Single-Actuator,Pneumatic,Crawling,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201902449
dc.rights.note未授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved