Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21427
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智星
dc.contributor.authorWen-Tze Chuangen
dc.contributor.author莊文澤zh_TW
dc.date.accessioned2021-06-08T03:33:46Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation[1] N. Chang, A. Baranwal, H. Zhuang, M. Shih, R. Rajan, Y. Jia, H. Liao, Y. Li, T. Ku, R. Lin, 'Machine Learning based Generic Violation Waiver System with Application on Electromigration,', ASP-DAC, 2018.
[2] A. Kahng, “Machine Learning Applications in Physical Design: Recent Results and Directions”, Proc. ACM/IEEE Intl. Symp. on Physical Design, 2018.
[3] S. Lin and N. Chang, “Challenges in Power-ground Integrity”, ICCAD, 2001.
[4] M. Dolatshah, A. Hadian, B. Minaei-Bidgoli, 'Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces', arXiv preprint arXiv:1511.00628, 2015.
[5] Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression Trees. Belmont, CA, Wadsworth, 1984
[6] Wikipedia contributors. (2019, March 17). Decision tree pruning. In Wikipedia, The Free Encyclopedia. Retrieved 12:35, June 1, 2019, from https://en.wikipedia.org/w/index.php?title=Decision_tree_pruning&oldid=888227457
[7] Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, in “Machine Learning: Proceedings of the Thirteenth International Conference, 1996,” pp. 148-156.
[8] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.
[10] Wikipedia contributors. (2019, May 26). Discounted cumulative gain. In Wikipedia, The Free Encyclopedia. Retrieved 13:06, June 1, 2019, from https://en.wikipedia.org/w/index.php?title=Discounted_cumulative_gain&oldid=898946880
[11] Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)
[12] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye and Tie-Yan Liu, LightGBM: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, 3149–3157, 2017
[13] Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin: CatBoost: Gradient Boosting with Categorical Features Support. In: Workshops on ML Systems at NIPS (2017)
[14] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter optimization at scale. In International Conference on Machine Learning, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21427-
dc.description.abstract一些時序限制(timing constraint)容易導致大型積體電路(large integrated circuits)或是系統單晶片(system-on-a-chip)之工作頻率下降,且經常因動態電壓降(dynamic voltage drop)導致違反建立時間(setup timing violation),可稱之為最大時序誤差(maximum timing pushout)。此問題於鰭式場效應電晶體設計(FinFET designs)中會更加嚴重,本論文目的為利用機器學習方法來預測危急時序情境 (critical scenarios),其中危急時序情境為包含了許多時序路徑(timing paths)的資料,使其更快速能進一步執行動態電壓降分析,以及危急時序路徑(critical timing path)之預測,使其能進而執行更佳準確之時序分析;其流程是先利用分類器去預測時序路徑之危急程度,接著去預測最危急的那些時序路徑之排名,最後算出情境之個別排名,而前幾名即為危急時序情境;接著危急時序情境中的時序路徑經由動態電壓降分析後,再利用分類器去預測時序路徑之危急程度,即可進行更準確之時序分析;以機器學習的方法,其最佳的分類模型效果能夠達到平均約90%準確率,對於前五名危急時序情境亦能夠達到約80%的命中率。zh_TW
dc.description.abstractTiming constrain will reduce operational frequency of large integrated circuits or system-on-a-chip, and it is often caused by setup timing violation which would be influenced by dynamic voltage drop, can be referred to as maximum timing pushout. This problem is exacerbated in the FinFET designs. This thesis proposes a method using machine learning techniques to predict critical scenarios quickly for analyzing dynamic voltage drop and critical timing paths predictor for accurate timing analysis. First, we use a classification model to predict critical level of timing paths, and use a regression model or a ranking model to predict ranking of the critical timing paths afterwards. Next, we can determine the critical scenarios for analyzing dynamic voltage drop. After the analysis, we use the classification model to predict critical level of timing paths which is similar to the first step. In our method, the best classification model can achieve about 90% accuracy, and 80% of hit-rate in Top-5 critical scenarios predicting.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:33:46Z (GMT). No. of bitstreams: 1
ntu-108-R06922112-1.pdf: 4020709 bytes, checksum: cb2cc1338f282250d377dca8222472eb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第1章 緒論 1
1.1 主題簡介 1
1.2 方法簡介 1
1.3 章節概要 2
第2章 問題定義與背景知識 4
2.1 建立時序(setup time)與保持時序(hold time) 4
2.2 建立時序鬆弛(setup slack)與鬆弛差量(delta slack) 5
2.2.1 資料到達時間(data arrival time) 5
2.2.2 資料需求時間(data required time) 5
2.2.3 建立時序鬆弛(setup slack) 6
2.2.4 電壓降(voltage drop) 6
2.2.5 鬆弛差量(delta slack) 6
2.3. 問題簡介與訓練資料之收集 7
第3章 研究方法 10
3.1 KNN(K nearest neighbor) 10
3.1.1 KNN 簡介 10
3.1.2 距離計算之方法與相關問題 11
3.1.3 K值影響 13
3.2 決策樹(decision tree) 14
3.2.1 決策樹簡介 14
3.2.2 決策樹建構過程 15
3.2.3 預防過擬合 18
3.3 集成學習(ensemble learning) 20
3.3.1 集成學習簡介 20
3.3.2 集成學習方法 20
3.4 隨機森林(random forests) 24
3.5 XGBoost(eXtreme Gradient Boosting) 25
3.6 類神經網路(neural networks) 28
3.6.1 類神經網路簡介 28
3.6.2 激活函數(activation function) 31
邏輯函數 31
歸一化指數函數 32
雙曲正切函數 32
線性整流函數 32
3.6.3 損失函數(loss function) 33
均方誤差 33
平均絕對誤差 34
交叉熵 34
第4章 系統架構設計 36
4.1 系統流程與資料集 36
4.2 Scenario Predictor 38
4.2.1 分類模型(bin-based classification model) 39
4.2.2 排名模型(ranking model) 39
4.2.3 權重算法(weighted algorithm) 40
4.3 Path Predictor 43
第5章 實驗結果與分析 44
5.1 模型評估方法 44
5.1.1 排名模型評估方法 44
5.1.2 分類模型評估 45
5.1.3 訓練集與測試集切割 45
5.2 實驗模型結果 45
5.2.1 Scenario Predictor 46
5.2.2 Path Predictor 47
5.2.3 模型訓練與測試時間 48
5.3 模型解釋 48
第6章 結論與未來展望 55
6.1 結論 55
6.2 未來展望 55
參考文獻 57
dc.language.isozh-TW
dc.title利用機器學習方法偵測受動態電壓降影響之危急時序路徑zh_TW
dc.titleDetecting Critical Timing Paths Caused by Dynamic Voltage Drop Using Machine Learningen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建模,張鴻嘉(Norman Chang)
dc.subject.keyword時序限制,違反建立時間,最大時序誤差,動態電壓降,機器學習,鰭式場效應電晶體設計,靜態時序分析,zh_TW
dc.subject.keywordtiming constraint,setup timing violation,maximum timing pushout,dynamic voltage drop,machine learning,FinFET designs,static timing analysis,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201900990
dc.rights.note未授權
dc.date.accepted2019-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved