Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝雅萍(Ya-Ping Hsieh),梁啟德(Chi-Te Liang)
dc.contributor.authorI-Fan Huen
dc.contributor.author胡逸凡zh_TW
dc.date.accessioned2021-06-08T03:33:41Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-06
dc.identifier.citation[1] K. L. Ekinci and M. L. Roukes, Review of Scientific Instruments 76, 061101 (2005).
[2] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[4] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
[5] D. Drosdoff and L. M. Woods, Physical Review B 82, 155459 (2010).
[6] Z. Lu and M. L. Dunn, Journal of Applied Physics 107, 044301 (2010).
[7] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Physical Review B 80, 045401 (2009).
[8] B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, Nano Letters 10, 3464 (2010).
[9] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Materials 6, 652 (2007).
[10] S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, Carbon 51, 236 (2013).
[11] Q. Zhao, M. B. Nardelli, and J. Bernholc, Physical Review B 65, 144105 (2002).
[12] G.-H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073 (2013).
[13] T. Zhu and J. Li, Progress in Materials Science 55, 710 (2010).
[14] K. L. Ekinci, Small 1, 786 (2005).
[15] S. M. Heinrich and I. Dufour, Resonant MEMS, 1 (2015).
[16] C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, Nature Nanotechnology 8, 923 (2013).
[17] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, Science 317, 83 (2007).
[18] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nature Nanotechnology 4, 861 (2009).
[19] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, Nature Nanotechnology 7, 301 (2012).
[20] B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, Nano Letters 8, 3735 (2008).
[21] G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Science 325, 1103 (2009).
[22] L. Liao and X. Duan, Materials Today 15, 328 (2012).
[23] S. Y. Kim and H. S. Park, Applied Physics Letters 94, 101918 (2009).
[24] J.-W. Jiang and J.-S. Wang, Journal of Applied Physics 111, 054314 (2012).
[25] S. Y. Kim and H. S. Park, Nano Letters 9, 969 (2009).
[26] J.-W. Jiang, B.-S. Wang, J.-S. Wang, and H. S. Park, Journal of Physics: Condensed Matter 27, 083001 (2015).
[27] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nature Nanotechnology 6, 543 (2011).
[28] W. Gao, P. Xiao, G. Henkelman, K. M. Liechti, and R. Huang, Journal of Physics D: Applied Physics 47, 255301 (2014).
[29] Y. y. Wang, Z. h. Ni, T. Yu, Z. X. Shen, H. m. Wang, Y. h. Wu, W. Chen, and A. T. Shen Wee, The Journal of Physical Chemistry C 112, 10637 (2008).
[30] S. J. Cartamil-Bueno, M. Cavalieri, R. Wang, S. Houri, S. Hofmann, and H. S. J. van der Zant, npj 2D Materials and Applications 1, 16 (2017).
[31] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Letters 8, 2458 (2008).
[32] M. Aykol, B. Hou, R. Dhall, S.-W. Chang, W. Branham, J. Qiu, and S. B. Cronin, Nano Letters 14, 2426 (2014).
[33] R. A. Barton, B. Ilic, A. M. van der Zande, W. S. Whitney, P. L. McEuen, J. M. Parpia, and H. G. Craighead, Nano Letters 11, 1232 (2011).
[34] C. Zener, Physical Review 52, 230 (1937).
[35] C. Zener, Physical Review 53, 90 (1938).
[36] I. Bargatin, E. B. Myers, J. S. Aldridge, C. Marcoux, P. Brianceau, L. Duraffourg, E. Colinet, S. Hentz, P. Andreucci, and M. L. Roukes, Nano Letters 12, 1269 (2012).
[37] J. Kang, D. Sarkar, Y. Khatami, and K. Banerjee, Applied Physics Letters 103, 083113 (2013).
[38] J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, Nanoscale 4, 4883 (2012).
[39] Y. Oshidari, T. Hatakeyama, R. Kometani, S. i. Warisawa, and S. Ishihara, Applied Physics Express 5, 117201 (2012).
[40] S. Lee, C. Chen, V. V. Deshpande, G.-H. Lee, I. Lee, M. Lekas, A. Gondarenko, Y.-J. Yu, K. Shepard, P. Kim, and J. Hone, 102, 153101 (2013).
[41] F. Guan, P. Kumaravadivel, D. V. Averin, and X. Du, Applied Physics Letters 107, 193102 (2015).
[42] J. Li, T.-F. Chung, Y. P. Chen, and G. J. Cheng, Nano Letters 12, 4577 (2012).
[43] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916 (2011).
[44] T. Li and Z. Zhang, Journal of Physics D: Applied Physics 43, 075303 (2010).
[45] S. Viola Kusminskiy, D. K. Campbell, A. H. Castro Neto, and F. Guinea, Physical Review B 83, 165405 (2011).
[46] D.-W. Park, S. Mikael, T.-H. Chang, S. Gong, and Z. Ma, 106, 102106 (2015).
[47] B. G. Prevo, D. M. Kuncicky, and O. D. Velev, Colloids and Surfaces A: Physicochemical and Engineering Aspects 311, 2 (2007).
[48] S. M. Song and B. J. Cho, Nanotechnology 21, 335706 (2010).
[49] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Applied Physics Letters 94, 062107 (2009).
[50] V. Dugas, J. Broutin, and E. Souteyrand, Langmuir 21, 9130 (2005).
[51] B. Roman and J. Bico, Journal of Physics: Condensed Matter 22, 493101 (2010).
[52] G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
[53] L. Gao, G.-X. Ni, Y. Liu, B. Liu, A. H. Castro Neto, and K. P. Loh, Nature 505, 190 (2013).
[54] H. Ashiba, R. Kometani, S. Warisawa, and S. Ishihara, in 2011 IEEE International Conference on Mechatronics and Automation2011), pp. 1333.
[55] G. A. Ferrari, A. B. de Oliveira, I. Silvestre, M. J. S. Matos, R. J. C. Batista, T. F. D. Fernandes, L. M. Meireles, G. S. N. Eliel, H. Chacham, B. R. A. Neves, and R. G. Lacerda, ACS Nano 12, 4312 (2018).
[56] N. Patra, B. Wang, and P. Král, Nano Letters 9, 3766 (2009).
[57] Q. Wang, Physics Letters A 374, 1180 (2010).
[58] G. López-Polín, M. Jaafar, F. Guinea, R. Roldán, C. Gómez-Navarro, and J. Gómez-Herrero, Carbon 124, 42 (2017).
[59] R. N. Dahms, J. Manin, L. M. Pickett, and J. C. Oefelein, Proceedings of the Combustion Institute 34, 1667 (2013).
[60] T. Stifter, O. Marti, and B. Bhushan, Physical Review B 62, 13667 (2000).
[61] W. Gao, K. M. Liechti, and R. Huang, Extreme Mechanics Letters 3, 130 (2015).
[62] A. L. Kitt, Z. Qi, S. Rémi, H. S. Park, A. K. Swan, and B. B. Goldberg, Nano Letters 13, 2605 (2013).
[63] D. Yoon, Y.-W. Son, and H. Cheong, Nano Letters 11, 3227 (2011).
[64] J. Wu, K. C. Hwang, and Y. Huang, Journal of the Mechanics and Physics of Solids 56, 279 (2008).
[65] G. Jung, Z. Qin, and M. J. Buehler, Extreme Mechanics Letters 2, 52 (2015).
[66] Z. Song and Z. Xu, Extreme Mechanics Letters 6, 82 (2016).
[67] O. Raccurt, F. Tardif, F. A. d'Avitaya, and T. Vareine, Journal of Micromechanics and Microengineering 14, 1083 (2004).
[68] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. N. Lau, Nature Nanotechnology 4, 562 (2009).
[69] P. Liu and Y. W. Zhang, Applied Physics Letters 94, 231912 (2009).
[70] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
[71] B. Uder, H. Gao, P. Kunnas, N. de Jonge, and U. Hartmann, Nanoscale 10, 2148 (2018).
[72] N. Clark, A. Oikonomou, and A. Vijayaraghavan, physica status solidi (b) 250, 2672 (2013).
[73] N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Science 336, 1557 (2012).
[74] J. S. Bunch and M. L. Dunn, Solid State Communications 152, 1359 (2012).
[75] J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nature Communications 3, 1024 (2012).
[76] D. Yoon, Y.-W. Son, and H. Cheong, Physical Review Letters 106, 155502 (2011).
[77] C. Metzger, S. Rémi, M. Liu, S. V. Kusminskiy, A. H. Castro Neto, A. K. Swan, and B. B. Goldberg, Nano Letters 10, 6 (2010).
[78] B. Rakshit and P. Mahadevan, Physical Review B 82, 153407 (2010).
[79] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Letters 28, 282 (2007).
[80] Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Applied Physics Letters 97, 243111 (2010).
[81] Y. Xu, O. Li, and R. Xu, in 2013 IEEE International Wireless Symposium (IWS)2013), pp. 1.
[82] T. Mei, J. Lee, Y. Xu, and X. P. Feng, Micromachines 9 (2018).
[83] X. Song, M. Oksanen, M. A. Sillanpää, H. G. Craighead, J. M. Parpia, and P. J. Hakonen, Nano Letters 12, 198 (2012).
[84] I. Kozinsky, H. W. C. Postma, I. Bargatin, and M. L. Roukes, Applied Physics Letters 88, 253101 (2006).
[85] C. C. Wu and Z. Zhong, Nano Letters 11, 1448 (2011).
[86] C. Chen, V. V. Deshpande, M. Koshino, S. Lee, A. Gondarenko, A. H. MacDonald, P. Kim, and J. Hone, Nature Physics 12, 240 (2015).
[87] R. N. Patel, J. P. Mathew, A. Borah, and M. M. Deshmukh, 2D Materials 3, 011003 (2016).
[88] R. De Alba, T. S. Abhilash, A. Hui, I. R. Storch, H. G. Craighead, and J. M. Parpia, Journal of Applied Physics 123, 095109 (2018).
[89] M. Takamura, H. Okamoto, K. Furukawa, H. Yamaguchi, and H. Hibino, Journal of Applied Physics 116, 064304 (2014).
[90] A. M. v. d. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Letters 10, 4869 (2010).
[91] P. Mohanty, D. A. Harrington, K. L. Ekinci, Y. T. Yang, M. J. Murphy, and M. L. Roukes, Physical Review B 66, 085416 (2002).
[92] A. B. Hutchinson, P. A. Truitt, K. C. Schwab, L. Sekaric, J. M. Parpia, H. G. Craighead, and J. E. Butler, Applied Physics Letters 84, 972 (2004).
[93] A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, Nano Letters 9, 2547 (2009).
[94] D. Davidovikj, J. J. Slim, S. J. Cartamil-Bueno, H. S. J. van der Zant, P. G. Steeneken, and W. J. Venstra, Nano Letters 16, 2768 (2016).
[95] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
[96] S. Shivaraman, R. A. Barton, X. Yu, J. Alden, L. Herman, M. V. S. Chandrashekhar, J. Park, P. L. McEuen, J. M. Parpia, H. G. Craighead, and M. G. Spencer, Nano Letters 9, 3100 (2009).
[97] C. Samanta, P. R. Yasasvi Gangavarapu, and A. K. Naik, Applied Physics Letters 107, 173110 (2015).
[98] N. Morell, A. Reserbat-Plantey, I. Tsioutsios, K. G. Schädler, F. Dubin, F. H. L. Koppens, and A. Bachtold, Nano Letters 16, 5102 (2016).
[99] F. Ye, J. Lee, and P. X. L. Feng, Nanoscale 9, 18208 (2017).
[100] S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. Deshmukh, Physical Review B 82, 155432 (2010).
[101] S. Kim, J. Yu, and A. M. van der Zande, Nano Letters 18, 6686 (2018).
[102] A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, 25, 6719 (2013).
[103] R. Yang, C. Chen, J. Lee, D. A. Czaplewski, and P. X. Feng, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)2017), pp. 163.
References for appendix
[1] C. Mattevi, H. Kim, and M. Chhowalla, Journal of Materials Chemistry 21, 3324 (2011).
[2] M. H. Griep, E. Sandoz-Rosado, T. M. Tumlin, and E. Wetzel, Nano Letters 16, 1657 (2016).
[3] D. Lee, G. D. Kwon, J. H. Kim, E. Moyen, Y. H. Lee, S. Baik, and D. Pribat, Nanoscale 6, 12943 (2014).
[4] Y.-P. Hsieh, C.-H. Shih, Y.-J. Chiu, and M. Hofmann, Chemistry of Materials 28, 40 (2016).
[5] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 5, 6069 (2011).
[6] N. Clark, A. Oikonomou, and A. Vijayaraghavan, physica status solidi (b) 250, 2672 (2013).
[7] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters 97, 187401 (2006).
[8] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Applied Physics Letters 91, 063124 (2007).
[9] W. R. Eisenstadt and Y. Eo, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 15, 483 (1992).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21424-
dc.description.abstract由碳原子以六方形式排列組成的二維材料石墨烯因其優異的力學與電學性質而備受矚目。由於石墨烯的諸多優異的性質,如與其簡易結構不相稱極大的楊氏模量、極高的導電與導熱能力、以及其可控的導電度使其極其適合用於製作微機電元件。日前已有學者利用石墨烯製作各式微機電元件如微米級開關、變容二極管和與微米級射頻開關,充分顯示石墨烯作為微機電元件的可靠性。第一個石墨烯共振器於2007年研製。在這項工作之後,已經投入了大量精力來研究和改善石墨烯共振器的性能。
石墨烯共振器是由懸浮石墨烯所構成的微機電元件,會對特定頻率的能量有特殊的回饋反映。當所施加的外力其頻率對應到石墨烯的共振頻率時石墨烯將產生共振現象。由於石墨烯具有極大的有效彈簧常數和極高的表面與體積比,石墨烯共振器的共振頻率可達到射頻的範圍。此外,由於石墨烯的單原子層結構,我們可以通過調節其應變(例如施加外加靜電場)來改變其共振頻率。
經研究顯示,石墨烯共振器的品質常數隨著共振器的尺度所小而下降,反映出在高頻下操作共振器的困難性。在這份研究中,我們設計了一套的自組裝程序,用於製造高共振頻率的共諧振器而不降低品質因數。我們可以通過電信量測方式讀取共振器的共振現象,並通過在其上施加靜電場來調控其共振頻率。於實驗中觀察到的大動態調製範圍充分顯示出我們的共振器非常適合應用於傳感領域。
zh_TW
dc.description.abstractGraphene, which is a single layer of carbon atoms bonded in a hexagonal lattice, is well known for its good electrical and mechanical properties. Lots of special properties such as large Young’s modulus, high thermal conductance, and gate tunable carrier concentration make it an ideal material for building MEMS device. Electromechanical switch, varactor, and radio frequency switch have been reported in the literature. In addition, the first graphene resonator was built in 2007. After this work, lots of effort has been devoted to studying and improving the performance of the graphene resonator.
Graphene resonator, a suspended graphene device with a defined size, will resonate when an external force with a certain frequency is applied. Due to the large effective spring constant and high surface to volume ratio, a graphene resonator can have a resonance frequency in the radio frequency region. Also, one atomic thick structure allows its resonant frequency to be easily changed by tuning its strain such as applying an external static electric field
Previous research reported that the quality factor of the graphene resonator will decrease with the scale of resonator implies that it is hard to operate resonator at high frequencies. Here we report a designed self-assembled procedure to fabricate high resonant frequency resonator without degrading the quality factor. We can read out the resonance behavior by electrical measurement scheme and tuning its resonance frequency by applying a static electric field on it. The observed large dynamic range of modulation makes our structures ideally suited for sensing applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:33:41Z (GMT). No. of bitstreams: 1
ntu-108-R05244006-1.pdf: 7443442 bytes, checksum: d48d6c166f7fe0644726d07c3d534748 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審訂書 i
致謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Graphene 2
1.1.1 Electrical property 2
1.1.2 Mechanical property 4
1.2 Resonator 6
1.3 Graphene resonator 9
Chapter 2 Intrinsic property of the graphene resonator 12
2.1 Theory 12
2.1.1 Free-vibrating resonator 13
2.1.2 Forced-vibrating resonator 18
2.2 Quality factor 22
2.3 Energy dissipation 26
2.3.1 Substrate loss 27
2.3.2 Thermoelastic damping 29
2.4 Structure of the resonator in this work 30
Chapter 3 Device fabrication 38
3.1 Idea of the device 39
3.2 Main procedure 45
3.3 Patterning graphene 48
3.3.1 Substrate mediate strain engineering of the graphene 50
3.3.2 Substrate preparation 55
3.4 Straining graphene 61
3.4.1 Elasto-capillarity 61
3.4.2 Self-assemble process 63
3.5 Requirement for the self-assemble procedure 69
3.5.1 Sliding of the graphene 69
3.5.2 Insufficient restoring force 73
3.6 Different procedure 77
Chapter 4 Results and discussion 81
4.1 AFM characterization 81
4.2 Raman characterization 90
4.3 Resonant frequency readout 100
4.3.1 Experimental method 100
4.3.2 Experimental results 111
4.4 Resonant frequency tuning 119
4.4.1 Experimental method 119
4.4.2 Experimental results 127
4.5 Structure characterization 132
4.6 Comparison 137
Chapter 5 Conclusions 142
BIBLIOGRAPHY 144
APPENDIX 149
dc.language.isoen
dc.title石墨烯共振器之製作與量測zh_TW
dc.titleFabrication and Measurements of Graphene Resonatorsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝馬利歐(Mario Hofmann),陳啟東(Chii-Dong Chen),藍彥文(Yann-Wen Lan)
dc.subject.keyword石墨烯,二維材料,共振器,微機電元件,高頻量測,zh_TW
dc.subject.keywordGraphene,2-dimensional material,Resonator,Micro-electromechanical device,High-frequency measurement,en
dc.relation.page172
dc.identifier.doi10.6342/NTU201902266
dc.rights.note未授權
dc.date.accepted2019-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved