Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21419
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor雷欽隆
dc.contributor.authorKai-Chun Suen
dc.contributor.author蘇楷鈞zh_TW
dc.date.accessioned2021-06-08T03:33:33Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-06
dc.identifier.citation癌症防治組, '大腸癌防治概況,' Health Promotion Administration, Ministry of Health and Welfare, [Online]. Available: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=615&pid=1126.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, 'Deep Residual Learning for Image Recognition,' in CVPR, 2016.
Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus Rohrbach, Shuicheng Yan, Jiashi Feng, 'Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution,' in arXive, 2019.
Pål Halvorsen, Michael Riegler, Steven Alexander Hicks, Konstantin Pogorelov, Håkon Kvale Stensland, Andreas Petlund, MD Pia Smedsrud, MD Thomas de Lange, MD Kristin Ranheim Randel, MD Peter Thelin Smidt, Trine B. Haugen, Mathias Lux, Duc-Tien Dang-Nguyen, 'The Biomedia ACM MM Grand Challenge 2019,' ACM Multi Media, 2019. [Online]. Available: https://github.com/kelkalot/biomedia-2019/wiki/Dataset#dataset-description.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin, 'Attention is All you Need,' in NIPS, 2017.
Olga RussakovskyEmail authorJia DengHao SuJonathan KrauseSanjeev SatheeshSean MaZhiheng HuangAndrej KarpathyAditya KhoslaMichael BernsteinAlexander C. BergLi Fei-Fei, 'ImageNet Large Scale Visual Recognition Challenge,' in International Journal of Computer Vision, 2015.
R C. Petersen, PhD, MD, P S. Aisen, MD, L A. Beckett, PhD, M C. Donohue, PhD, A C. Gamst, PhD, D J. Harvey, PhD, C R. Jack, Jr, MD, W J. Jagust, MD, L M. Shaw, PhD, A W. Toga, PhD, J Q. Trojanowski, MD, PhD, and M W. Weiner, MD, 'Alzheimer's Disease Neuroimaging Initiative (ADNI),' in Neurology, 2010.
Adam Yala , Constance Lehman, Tal Schuster, Tally Portnoi, Regina Barzilay, 'A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction,' in Radiology, 2019.
Alexander Selvikv Lundervold, Arvid Lundervold, 'An overview of deep learning in medical imaging focusing on MRI,' in arXiv, 2018.
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, 'Gradient-Based Learning Applied to Document Recognition,' in Proceedings of the IEEE, 1998.
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 'ImageNet classification with deep convolutional neural networks,' in NIPS, 2012.
Sepp Hochreiter, J urgen Schmidhuber, 'LONG SHORT-TERM MEMORY,' in Neural Computation, 1997.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair‡, 'Generative Adversarial Net,' in Advances in Neural Information Processing Systems 27 , 2014.
Augustus Odena, Christopher Olah, Jonathon Shlens, 'Conditional Image Synthesis with Auxiliary Classifier GANs,' in arXiv, 2017.
Anant Gupta, Srivas Venkatesh, Sumit Chopra, Christian Ledig, 'Generative Image Translation for Data Augmentation of Bone,' in MIDL, 2019.
Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, Christopher G Schwarz, Matthew L Senjem, Jeffrey L Gunter, Katherine Andriole, Mark Michalski, 'Medical Image Synthesis for Data Augmentation and Anonymization using Generative Adversarial Networks,' in Simulation and Synthesis in Medical Imaging, 2018.
Vajira Thambawita, Debesh Jha, Michael Riegler, Pål Halvorsen, Hugo Lewi Hammer, Håvard D. Johansen, Dag Johansen, 'The Medico-Task 2018: Disease Detection in the Gastrointestinal Tract using Global Features and Deep Learning,' in MediaEval’18, 2018.
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu, 'Squeeze-and-Excitation Networks,' in journal version of the CVPR, 2018.
Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, Xiaogang Wang, 'Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification,' in CVPR, 2017.
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, 'Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,' in IEEE ICCV, 2017.
Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, Vineeth N Balasubramanian, 'Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks,' in IEEE Winter Conf. on Applications of Computer Vision , 2018.
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen, 'MobileNetV2: Inverted Residuals and Linear Bottlenecks,' in CVPR, 2018.
C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, USA; 1 edition, 1996.
J. Brownlee, 'How to Improve Neural Network Stability and Modeling Performance With Data Scaling,' 4 2 2019. [Online]. Available: https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/.
Karen Simonyan, Andrew Zisserman, 'Very Deep Convolutional Networks for Large-Scale Image Recognition,' in ICLR, 2015.
J. Kiefer and J. Wolfowitz, 'Stochastic Estimation of the Maximum of a Regression Function,' The Annals of Mathematical Statistics, pp. pp. 462-466, 1952.
Mathias Kirkerød 1,3, Vajira Thambawita1,2, Michael Riegler1,2,3, Pål Halvorsen1,3, 'Using preprocessing as a tool in medical image detection,' in ACM Multi Media, 2018.
Michael Steiner, Mathias Lux, and Pål Halvorsen, 'The 2018 Medico Multimedia Task Submission of Team NOAT using Neural Network Features and Search-based Classification,' in ACM Multimedia, 2018.
Danielle Dias, Ulisses Dias, 'Transfer learning with CNN architectures for classifying,' in ACM Multi Media, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21419-
dc.description.abstract自從機器學習因為硬體提升而開始蓬勃發展,尤其是深度學習,很多以往認為困難的任務,像是分類、影像切割、語意分析等,可以以更高的準確率及速度來完成。在醫療領域裡,長期需要大量人力去判斷病理,因此是非常適合機器學習發展的領域。感謝ACM Multi Media challenge 2019 釋出的腸胃鏡照片資料集,我們將實作深度學習模型去自動化分類16種腸胃圖片。
在台灣,腸道病例逐漸增加,且大腸癌歷年統計 [1] 的死亡率登上國人死因第三位,和醫生的討論亦得知食道炎、腸胃息肉的檢查為重要,需求也逐年增加,如何更快的發現病徵及提早治療為目前趨勢。在醫院裡,充滿著忙碌的醫生及病理研究員,檢查的任務很瑣碎卻又是必須做且要做得詳盡,例如細胞切片的判讀,必須從幾十億畫素的顯微鏡視野下找出些微的病理特徵,因此如果交由電腦判讀,即可快速掃整張玻片。而腸胃鏡檢測則以輔助判斷為目標,可提供經驗較少的醫生更好的意見,降低漏判發炎或息肉的狀況,增加可做腸胃鏡檢查的人手,AI著實有機會解決這問題。
此次研究中,以加速模型運算和視覺化,增加模型預測準確度為目標,並和醫生合作去尋找最好的模型。在深度學習領域中,有很多架構在大型資料集上有不錯表現,而我們將實驗Resnet152 [2]的架構,改用Octave convolution [3]並調整leaky relu的斜率,達成在CPU上2.71 FPS的速度及0.901的準確率。最後,期許這篇研究能促進深度學習在腸胃鏡追蹤的發展。
zh_TW
dc.description.abstractSince machine learning has been boosted significantly, especially for deep learning, by the development of hardware, a considerable amount of arduous task, like image classification and segmentation, can be solved by machine even with higher accurate and more robust than individuals. In the medical domain, there are a lot of works that need the more human source to complete, so it is suitable for applying ML. Thanks to ACM Multimedia challenge 2019 [4], we obtain an image dataset of “gastrointestinal track”(GI-track), which is the open-source of gastrointestinal track, and implement deep neural network to automatically classify the image. With the development of this task, I think the world can gain more benefits.
In this thesis, we solve problems—improving model efficiency and robustness, and visualizing model interpretation—to predict label precisely. There are some solutions to solve the classification problem on large open datasets. However, we derived the ResNet152 model and changed its convolution layer with Octave convolution layer. To achieve training quickly, we apply leaky_relu with decay alpha to the activation function. As a consequence, the model can infer an image at speed 2.71 FPS on CPU and achieve 90.1% accuracy. Thus, we hope the development of machine learning in health care can be accelerated significantly.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:33:33Z (GMT). No. of bitstreams: 1
ntu-108-R06921062-1.pdf: 2326972 bytes, checksum: 6981470b002ebbd500a125f68953fc97 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
LIST OF FIGURES IV
LIST OF TABLES V
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 2
Chapter 2 Related Work 4
Chapter 3 Data 7
3.1 Dataset Exploration 7
3.2 Dataset for Transfer-Learning 9
Chapter 4 Methodology 10
4.1 Data Pre-Processing 10
4.2 Structure Decision 13
4.3 Model Design 16
4.4 Transfer learning 19
Chapter 5 Evaluation 20
5.1 Setting 20
5.2 Measurement Method 21
5.3 Measurement 24
5.3.1. Accuracy, MCC and FPS 24
5.3.2. Recall 26
5.3.3. Precision 27
5.4 Visualization 28
5.5 Feature Space 35
5.6 Discussion 36
5.6.1. Efficiency 37
5.6.2. Interpretation 37
Chapter 6 Conclusion 39
6.1 Future work 39
Reference 41
dc.language.isoen
dc.title以高低頻譜模組增進腸胃鏡檢測之效率zh_TW
dc.titleUsing Octave module to improve efficiency of Gastrointestinal Track Classificationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭斯彥,顏嗣鈞
dc.subject.keyword機器學習,深度學習,腸胃鏡追蹤,zh_TW
dc.subject.keywordMachine learning,Deep learning,gastrointestinal track,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201902607
dc.rights.note未授權
dc.date.accepted2019-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved