請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳信希 | |
dc.contributor.author | Ching Huang | en |
dc.contributor.author | 黃晴 | zh_TW |
dc.date.accessioned | 2021-06-08T03:33:31Z | - |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-06 | |
dc.identifier.citation | Jorge A Balazs, Edison Marrese-Taylor, Pablo Loy-ola, and Yutaka Matsuo. 2017. Refining raw sentence representations for textual entailment recognition via attention. arXiv preprint arXiv:1707.03103.
Jeremy Barnes, Roman Klinger, and Sabine Schulte imWalde. 2018. Projecting embeddings for domain adaption: Joint modeling of sentiment analysis in diverse domains. arXiv preprint arXiv:1806.04381. Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing(EMNLP). Association for Computational Linguistics. Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2018. Neural natural language inference models enhanced with external knowledge. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 2406–2417. Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger. 2016. Adversarial deep averaging networks for cross-lingual sentiment classification. arXiv preprint arXiv:1606.01614. Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-ina Williams, Samuel R Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. Xnli: Evaluating cross-lingual sentence representations. arXiv preprintarXiv:1809.05053. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,Pascal Germain, Hugo Larochelle, Francois Laviolette, Mario Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc. Viktor Hangya, Fabienne Braune, Alexander Fraser, and Hinrich Schutze. 2018. Two methods for domain adaptation of bilingual tasks: Delightfully simple and broadly applicable. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 810–820. Dongyeop Kang, Tushar Khot, Ashish Sabharwal, and Eduard Hovy. 2018. Adventure: Adversarial training for textual entailment with knowledge-guided examples. arXiv preprint arXiv:1805.04680. Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-feng Gao. 2019. Multi-task deep neural networks for natural language understanding. arXiv preprint arXiv:1901.11504. 梅家駒Jia-Ju Mei. 1983. 同義詞詞林 (Chinese Synonym Dictionary). 上海辭書出版社. Matteo Negri, Alessandro Marchetti, Yashar Mehdad, Luisa Bentivogli, and Danilo Giampiccolo. 2013. Semeval-2013 task 8: Cross-lingual textual entailment for content synchronization. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 25–33, Atlanta, Georgia, USA. Association for Computational Linguistics. Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543. Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365. Sebastian Ruder and Barbara Plank. 2018. Strong baselines for neural semi-supervised learning under domain shift. arXiv preprint arXiv:1804.09530. Hideki Shima, Hiroshi Kanayama, Cheng-Wei Lee, Chuan-Jie Lin, Teruko Mitamura, Yusuke Miyao, Shuming Shi, and Koichi Takeda. 2011. Overview of ntcir-9 rite: Recognizing inference in text. In Ntcir. Chaitanya Shivade, Preethi Raghavan, and Siddharth Patwardhan. 2016. Addressing limited data for textual entailment across domains. arXiv preprintarXiv:1606.02638. Adina Williams, Nikita Nangia, and Samuel Bowman.2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long Papers), pages 1112–1122. Association for Computational Linguistics. David Yarowsky. 1995. Unsupervised word sense dis-ambiguation rivaling supervised methods. In 33rd annual meeting of the association for computational linguistics. Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge & Data Engineering, (11):1529–1541. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21418 | - |
dc.description.abstract | 近年來,深度類神經網路在許多自然語言處理的議題上,都有十分傑出的表現,包含了這篇研究的主軸「文字蘊含」。文字蘊含是自然語言處理的領域中一個十分經典的議題,定義是在當給定了一個句子作為前提之下,是否能夠判斷另一個句子與前提句的關聯是:(1) 一定正確 (2) 一定錯誤,或者 (3) 毫無關係。文字蘊含的英文資料集像是Stanford Natural Language Inference (SNLI) 與Multi-Genre Natural Language Inference (MultiNLI) 都貢獻了許多由專業人員人工標記的資料,因此讓我們能夠訓練更複雜的深度學習模型。然而,這些資料集卻只有英文的樣本,因此除了英文以外的語言在文字蘊含的議題上,經常要面臨到人工標記資料不足的困擾。因此,這篇研究的目標是使用現有的英文文字蘊含資料集創造一個跨語言的文字蘊含模型。
最近,由Google提出的多語言的預訓練句子表示方式BERT,明顯地減輕了上述的問題。利用BERT為預訓練句子表現,再使用零樣本跨語言的學習方式,就能成功地應用於文字蘊含的議題上。而這篇論文提出了一個對抗式的訓練方式於零樣本的跨語言文字蘊含,能夠讓訓練集的語言與測試集的語言表現差距更加減少。基於我們零樣本的跨語言文字蘊含的成功,我們甚至將模型延伸到不只跨語言並同時跨領域的文字蘊含議題之上。只要使用了這篇論文中陳述的同時跨語言並跨領域的訓練機制,文字蘊含模型也能利用沒有標記的非英語的不同領域的資料來增強模型。實驗結果也證實了在上述所提的兩種情況之下,此篇論文的對抗式機制都能讓應用BERT之後的模型表現更上層樓。 | zh_TW |
dc.description.abstract | Recently, deep neural networks have achieved astonishing performance in a variety of natural language processing tasks, including textual entailment recognition (TER) tasks which this paper focuses on. Textual entailment recognition (TER), also known as Natural Language Inference (NLI), is a classic natural language processing task whose goal is to determine whether a “hypothesis” sentence is true, false, or unrelated given a “premise” sentence. Textual Entailment Recognition datasets such as the Stanford Natural Language Inference (SNLI) corpus and the Multi-Genre Natural Language Inference (MultiNLI) corpus contributed a large amount of annotated data, which enabled the training of complex deep learning models. However, these corpora only contain English examples. Languages other than English often struggle with the problem of insufficient annotated data. As a result, this study aims to employ the available English NLI corpus but provide a cross-lingual Textual Entailment Recognition model.
The state-of-the-art multi-lingual sentence representation BERT, proposed by Google, has alleviated the specified problem by adopting zero-shot cross-lingual Textual Entailment Recognition. This paper proposes an adversarial training approach which further narrows the gap between the source and the target language. Moreover, based on the success of the zero-shot cross-lingual training, we extend the scenario to another adversarial training mechanism for zero-shot cross-lingual and cross-domain Textual Entailment Recognition. With the presented cross-lingual and cross-domain training mechanism, TER models could even utilize unlabeled out-of-domain and non-English training instances. Experimental results confirm that the pre-trained BERT sentence representations still benefit from the adversarial training in both scenarios. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:33:31Z (GMT). No. of bitstreams: 1 ntu-108-R06922014-1.pdf: 787802 bytes, checksum: 81d58208b51acafa2c00d5c4ba5e4265 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES x Chapter 1 Introduction 1 1.1 Textual Entailment Recognition 1 1.1.1 TER Introduction 1 1.1.2 Challenging Issues 2 1.2 Motivation 3 1.3 Goal 4 1.4 Thesis Structure 6 Chapter 2 Related Work 7 2.1 Adversarial Training 7 2.2 Cross-lingual Textual Entailment Recognition 8 2.3 Word and Sentence Representations 8 2.4 Domain Adaptation 9 Chapter 3 Cross-lingual Models 12 3.1 Overview 12 3.2 Network Architecture 12 3.3 Network Optimization 14 Chapter 4 Cross-lingual and Cross-domain Models 16 4.1 Overview 16 4.2 Self-training 17 4.3 Zero-shot Cross-lingual Adversarial Training 18 Chapter 5 Experiments and Discussion 20 5.1 Experimental Settings 20 5.2 Datasets 20 5.3 Zero-shot Cross-lingual Results 22 5.4 Zero-shot Cross-lingual and Cross-domain Results 26 5.5 Parameter Tuning 27 5.6 Discussion 29 Chapter 6 Conclusion and Future Work 32 6.1 Conclusion 32 6.2 Future Work 32 REFERENCE 34 | |
dc.language.iso | en | |
dc.title | 對抗式零樣本學習於跨語言及跨領域之文字蘊含識別 | zh_TW |
dc.title | Adversarial Training for Zero-Shot Cross-Lingual and Cross-Domain Textual Entailment Recognition | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭卜壬,蔡宗翰,陳冠宇 | |
dc.subject.keyword | 文字蘊含,零樣本學習,跨語言學習,跨領域學習,對抗式學習,MultiNLI資料集, | zh_TW |
dc.subject.keyword | Textual Entailment Recognition,Natural Language Inference,Zero-shot Learning,Cross-lingual learning,Cross-domain learning,Adversarial learning,MultiNLI corpus, | en |
dc.relation.page | 37 | |
dc.identifier.doi | 10.6342/NTU201900744 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 769.34 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。