Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21415
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源(Chien-Yuan Pan)
dc.contributor.authorChi-Chong Lauen
dc.contributor.author劉子聰zh_TW
dc.date.accessioned2021-06-08T03:33:27Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-06
dc.identifier.citationAizenman, E., Stout, A.K., Hartnett, K.A., Dineley, K.E., McLaughlin, B., and Reynolds, I.J. (2000). Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75, 1878-1888.
Alam, S., and Kelleher, S.L. (2012). Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4, 875-903.
Andrews, G.K. (2000). Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59, 95-104.
Arias-Carrión, O., Stamelou, M., Murillo-Rodríguez, E., Menéndez-González, M., and Pöppel, E. (2010). Dopaminergic reward system: a short integrative review. Int Arch Med 3, 24.
Assaf, S.Y., and Chung, S.H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734-736.
Ben-Shachar, D., Zuk, R., Gazawi, H., and Ljubuncic, P. (2004). Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 67, 1965-1974.
Berg, J.M. (1990). Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 265, 6513-6516.
Bossy-Wetzel, E., Talantova, M.V., Lee, W.D., Schölzke, M.N., Harrop, A., Mathews, E., Götz, T., Han, J., Ellisman, M.H., Perkins, G.A., et al. (2004). Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351-365.
Boya, P., González-Polo, R.A., Casares, N., Perfettini, J.L., Dessen, P., Larochette, N., Métivier, D., Meley, D., Souquere, S., Yoshimori, T., et al. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25, 1025-1040.
Bush, A.I., Pettingell, W.H., Multhaup, G., d Paradis, M., Vonsattel, J.P., Gusella, J.F., Beyreuther, K., Masters, C.L., and Tanzi, R.E. (1994). Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265, 1464-1467.
Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T. (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933-2942.
Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M., Melino, G., and Raschella, G. (2017). Zinc-finger proteins in health and disease. Cell Death Discov 3, 17071.
Chang, C.L., Liao, J.J., Huang, W.P., and Lee, H. (2007). Lysophosphatidic acid inhibits serum deprivation-induced autophagy in human prostate cancer PC-3 cells. Autophagy 3, 268-270.
Chen, W.Y., John, J.A., Lin, C.H., and Chang, C.Y. (2007). Expression pattern of metallothionein, MTF-1 nuclear translocation, and its dna-binding activity in zebrafish (Danio rerio) induced by zinc and cadmium. Environ Toxicol Chem 26, 110-117.
Choi, A.M., Ryter, S.W., and Levine, B. (2013). Autophagy in human health and disease. N Engl J Med 368, 651-662.
Choi, D.W., and Koh, J.Y. (1998). Zinc and brain injury. Annu Rev Neurosci 21, 347-375.
Chung, S.K., Lee, M.G., Ryu, B.K., Lee, J.H., Han, J., Byun, D.S., Chae, K.S., Lee, K.Y., Jang, J.Y., Kim, H.J., et al. (2007). Frequent alteration of XAF1 in human colorectal cancers: implication for tumor cell resistance to apoptotic stresses. Gastroenterology 132, 2459-2477.
Dalton, T.P., Li, Q., Bittel, D., Liang, L., and Andrews, G.K. (1996). Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271, 26233-26241.
Dawson, V.L., and Dawson, T.M. (1998). Nitric oxide in neurodegeneration. Prog Brain Res 118, 215-229.
Decker, T., and Lohmann-Matthes, M.L. (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115, 61-69.
Frake, R.A., Ricketts, T., Menzies, F.M., and Rubinsztein, D.C. (2015). Autophagy and neurodegeneration. J Clin Invest 125, 65-74.
Frederickson, C.J. (1989). Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31, 145-238.
Frederickson, C.J., and Bush, A.I. (2001). Synaptically released zinc: physiological functions and pathological effects. Biometals 14, 353-366.
Frederickson, C.J., Koh, J.Y., and Bush, A.I. (2005). The neurobiology of zinc in health and disease. Nat Rev Neurosci 6, 449-462.
Frederickson, C.J., Maret, W., and Cuajungco, M.P. (2004). Zinc and excitotoxic brain injury: a new model. Neuroscientist 10, 18-25.
Günther, V., Lindert, U., and Schaffner, W. (2012). The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823, 1416-1425.
Günes, C., Heuchel, R., Georgiev, O., Müller, K.H., Lichtlen, P., Blüthmann, H., Marino, S., Aguzzi, A., and Schaffner, W. (1998). Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17, 2846-2854.
Gao, H.L., Zheng, W., Xin, N., Chi, Z.H., Wang, Z.Y., and Chen, J. (2009). Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16, 416-425.
Gheorghe, M., Sandve, G.K., Khan, A., Chèneby, J., Ballester, B., and Mathelier, A. (2019). A map of direct TF-DNA interactions in the human genome. Nucleic Acids Res 47, e21.
Gitler, A.D., Dhillon, P., and Shorter, J. (2017). Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10, 499-502.
Goedert, M., and Spillantini, M.G. (2006). A century of Alzheimer's disease. Science 314, 777-781.
Greengard, P., Allen, P.B., and Nairn, A.C. (1999). Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435-447.
Haase, H., and Maret, W. (2003). Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291, 289-298.
Hambidge, M. (2000). Human zinc deficiency. J Nutr 130, 1344S-1349S.
Hardyman, J.E., Tyson, J., Jackson, K.A., Aldridge, C., Cockell, S.J., Wakeling, L.A., Valentine, R.A., and Ford, D. (2016). Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc. Metallomics 8, 337-343.
Heemels, M.T. (2016). Neurodegenerative diseases. Nature 539, 179.
Howell, G.A., Welch, M.G., and Frederickson, C.J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736-738.
Hoyt, K.R., Reynolds, I.J., and Hastings, T.G. (1997). Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp Neurol 143, 269-281.
Huang, K.T., Chen, Y.H., and Walker, A.M. (2004). Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 37, 406, 408, 410-402.
Hughes, F.M., Jr., and Cidlowski, J.A. (1999). Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39, 157-171.
Hung, H.H., Huang, W.P., and Pan, C.Y. (2013). Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell Biol Toxicol 29, 415-429.
Hung, H.H., Kao, L.S., Liu, P.S., Huang, C.C., Yang, D.M., and Pan, C.Y. (2017). Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade. Mol Cell Neurosci 82, 35-45.
Hwang, J.J., Kim, H.N., Kim, J., Cho, D.H., Kim, M.J., Kim, Y.S., Kim, Y., Park, S.J., and Koh, J.Y. (2010). Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23, 997-1013.
Jackson, D.M., and Westlind-Danielsson, A. (1994). Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64, 291-370.
Justice, J.A., Manjooran, D.T., Yeh, C.Y., Hartnett-Scott, K.A., Schulien, A.J., Kosobucki, G.J., Mammen, S., Palladino, M.J., and Aizenman, E. (2018). Molecular Neuroprotection Induced by Zinc-Dependent Expression of Hepatitis C-Derived Protein NS5A Targeting Kv2.1 Potassium Channels. J Pharmacol Exp Ther 367, 348-355.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
Kawamata, T., Horie, T., Matsunami, M., Sasaki, M., and Ohsumi, Y. (2017). Zinc starvation induces autophagy in yeast. J Biol Chem 292, 8520-8530.
Kimura, T., and Kambe, T. (2016). The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 17, 336.
Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931-937.
Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79, 213-231.
Kägi, J.H. (1991). Overview of metallothionein. Methods Enzymol 205, 613-626.
Koh, J.Y., Suh, S.W., Gwag, B.J., He, Y.Y., Hsu, C.Y., and Choi, D.W. (1996). The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013-1016.
Lee, J.K., Jin, H.K., Park, M.H., Kim, B.R., Lee, P.H., Nakauchi, H., Carter, J.E., He, X., Schuchman, E.H., and Bae, J.S. (2014a). Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J Exp Med 211, 1551-1570.
Lee, J.M., Wagner, M., Xiao, R., Kim, K.H., Feng, D., Lazar, M.A., and Moore, D.D. (2014b). Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112-115.
Lee, M.G., Huh, J.S., Chung, S.K., Lee, J.H., Byun, D.S., Ryu, B.K., Kang, M.J., Chae, K.S., Lee, S.J., Lee, C.H., et al. (2006). Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene 25, 5807-5822.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Li, Y., Hough, C.J., Suh, S.W., Sarvey, J.M., and Frederickson, C.J. (2001). Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86, 2597-2604.
Liuzzi, J.P., Guo, L., Yoo, C., and Stewart, T.S. (2014). Zinc and autophagy. Biometals 27, 1087-1096.
Liuzzi, J.P., and Yoo, C. (2013). Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells. Biol Trace Elem Res 156, 350-356.
Lo, H.S., Chiang, H.C., Lin, A.M., Chiang, H.Y., Chu, Y.C., and Kao, L.S. (2004). Synergistic effects of dopamine and Zn2+ on the induction of PC12 cell death and dopamine depletion in the striatum: possible implication in the pathogenesis of Parkinson's disease. Neurobiol Dis 17, 54-61.
Mankouri, J., Dallas, M.L., Hughes, M.E., Griffin, S.D., Macdonald, A., Peers, C., and Harris, M. (2009). Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. Proc Natl Acad Sci U S A 106, 15903-15908.
Maret, W., Jacob, C., Vallee, B.L., and Fischer, E.H. (1999). Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A 96, 1936-1940.
Maret, W., Yetman, C.A., and Jiang, L. (2001). Enzyme regulation by reversible zinc inhibition: glycerol phosphate dehydrogenase as an example. Chem Biol Interact 130-132, 891-901.
McAllister, B.B., and Dyck, R.H. (2017). A new role for zinc in the brain. Elife 6.
Menzies, F.M., Fleming, A., and Rubinsztein, D.C. (2015). Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16, 345-357.
Metzger, S., Saukko, M., Van Che, H., Tong, L., Puder, Y., Riess, O., and Nguyen, H.P. (2010). Age at onset in Huntington's disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet 128, 453-459.
Metzger, S., Walter, C., Riess, O., Roos, R.A., Nielsen, J.E., Craufurd, D., Nguyen, H.P., and Network, R.I.o.t.E.H.s.D. (2013). The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients. PLoS One 8, e68951.
Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
Montague, J.W., Bortner, C.D., Hughes, F.M., Jr., and Cidlowski, J.A. (1999). A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64, 563-569.
Muñoz, P., Huenchuguala, S., Paris, I., and Segura-Aguilar, J. (2012). Dopamine oxidation and autophagy. Parkinsons Dis 2012, 920953.
Murphy, B.J., Andrews, G.K., Bittel, D., Discher, D.J., McCue, J., Green, C.J., Yanovsky, M., Giaccia, A., Sutherland, R.M., Laderoute, K.R., et al. (1999). Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59, 1315-1322.
Ostergren, A., Svensson, A.L., Lindquist, N.G., and Brittebo, E.B. (2005). Dopamine melanin-loaded PC12 cells: a model for studies on pigmented neurons. Pigment Cell Res 18, 306-314.
Pan, R., Timmins, G.S., Liu, W., and Liu, K.J. (2015). Autophagy Mediates Astrocyte Death During Zinc-Potentiated Ischemia--Reperfusion Injury. Biol Trace Elem Res 166, 89-95.
Perl, D.P. (2010). Neuropathology of Alzheimer's disease. Mt Sinai J Med 77, 32-42.
Rameau, G.A., Chiu, L.Y., and Ziff, E.B. (2003). NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol Aging 24, 1123-1133.
Rameau, G.A., Chiu, L.Y., and Ziff, E.B. (2004). Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem 279, 14307-14314.
Rangel-Barajas, C., Coronel, I., and Florán, B. (2015). Dopamine Receptors and Neurodegeneration. Aging Dis 6, 349-368.
Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C.J., and Rubinsztein, D.C. (2006). Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15, 1209-1216.
Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Cherny, R., Li, Q.X., Tammer, A., et al. (2003). Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60, 1685-1691.
Roscioli, E., Tran, H.B., Jersmann, H., Nguyen, P.T., Hopkins, E., Lester, S., Farrow, N., Zalewski, P., Reynolds, P.N., and Hodge, S. (2017). The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD. Am J Physiol Lung Cell Mol Physiol 313, L453-L465.
Sandstead, H.H. (2000). Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130, 347S-349S.
Sensi, S.L., Paoletti, P., Bush, A.I., and Sekler, I. (2009). Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10, 780-791.
Sensi, S.L., Ton-That, D., and Weiss, J.H. (2002). Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol Dis 10, 100-108.
Sensi, S.L., Yin, H.Z., and Weiss, J.H. (2000). AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 12, 3813-3818.
Shah, N.H., and Aizenman, E. (2014). Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5, 38-58.
Shin, C.H., Lee, M.G., Han, J., Jeong, S.I., Ryu, B.K., and Chi, S.G. (2017). Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A 114, 5683-5688.
Si, F., Shin, S.H., Biedermann, A., and Ross, G.M. (1999). Estimation of PC12 cell numbers with acid phosphatase assay and mitochondrial dehydrogenase assay: dopamine interferes with assay based on tetrazolium. Exp Brain Res 124, 145-150.
Smirnova, I.V., Bittel, D.C., Ravindra, R., Jiang, H., and Andrews, G.K. (2000). Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275, 9377-9384.
Stitt, M.S., Wasserloos, K.J., Tang, X., Liu, X., Pitt, B.R., and St Croix, C.M. (2006). Nitric oxide-induced nuclear translocation of the metal responsive transcription factor, MTF-1 is mediated by zinc release from metallothionein. Vascul Pharmacol 44, 149-155.
Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L., and Palmiter, R.D. (1984). A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A 81, 7318-7322.
Suh, S.W., Won, S.J., Hamby, A.M., Yoo, B.H., Fan, Y., Sheline, C.T., Tamano, H., Takeda, A., and Liu, J. (2009). Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29, 1579-1588.
Szewczyk, B. (2013). Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5, 33.
Takeda, A., Tamano, H., Tochigi, M., and Oku, N. (2005). Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 46, 221-225.
Tamano, H., and Takeda, A. (2011). Dynamic action of neurometals at the synapse. Metallomics 3, 656-661.
Thompson, R.B., Whetsell, W.O., Maliwal, B.P., Fierke, C.A., and Frederickson, C.J. (2000). Fluorescence microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J Neurosci Methods 96, 35-45.
Ueno, S., Tsukamoto, M., Hirano, T., Kikuchi, K., Yamada, M.K., Nishiyama, N., Nagano, T., Matsuki, N., and Ikegaya, Y. (2002). Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158, 215-220.
Vallee, B.L. (1995). The function of metallothionein. Neurochem Int 27, 23-33.
Wei, C.C., Luo, Z., Hogstrand, C., Xu, Y.H., Wu, L.X., Chen, G.H., Pan, Y.X., and Song, Y.F. (2018). Zinc reduces hepatic lipid deposition and activates lipophagy via Zn(2+)/MTF-1/PPARalpha and Ca(2+)/CaMKKbeta/AMPK pathways. FASEB J, fj201800463.
Wei, G., Hough, C.J., Li, Y., and Sarvey, J.M. (2004). Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience 125, 867-877.
Weiss, J.H., Sensi, S.L., and Koh, J.Y. (2000). Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21, 395-401.
Wersinger, C., Chen, J., and Sidhu, A. (2004). Bimodal induction of dopamine-mediated striatal neurotoxicity is mediated through both activation of D1 dopamine receptors and autoxidation. Mol Cell Neurosci 25, 124-137.
Westerink, R.H., and Ewing, A.G. (2008). The PC12 cell as model for neurosecretion. Acta Physiol (Oxf) 192, 273-285.
Wu, Y., Li, Y., Zhang, H., Huang, Y., Zhao, P., Tang, Y., Qiu, X., Ying, Y., Li, W., Ni, S., et al. (2015). Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat Cell Biol 17, 715-725.
Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180-186.
Yang, Y., Jing, X.P., Zhang, S.P., Gu, R.X., Tang, F.X., Wang, X.L., Xiong, Y., Qiu, M., Sun, X.Y., Ke, D., et al. (2013). High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS One 8, e55384.
Yokoyama, M., Koh, J., and Choi, D.W. (1986). Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71, 351-355.
Yu, S.P. (2003). Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70, 363-386.
Yu, S.P., Canzoniero, L.M., and Choi, D.W. (2001). Ion homeostasis and apoptosis. Curr Opin Cell Biol 13, 405-411.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21415-
dc.description.abstract金屬調控轉錄因子1 (metal-regulatory transcription factor 1, MTF1) 與鋅離子 (Zn2+)結合後,可與基因增強子區域的MRE結合,進而調控基因表現。多巴胺(dopamine, DA)是一種神經遞質,與G蛋白偶聯受體結合活化相關訊息傳導途徑。我們之前的報導顯示DA可提高胞內鋅離子濃度([Zn2+]i),更是DA誘導PC12細胞產生細胞自噬的先決條件,然而相關機制並不清楚。綜合以上訊息,我們認為可能是透過活化MTF1,促進細胞自噬相關基因的表現。因此我們將MTF1表現在PC12細胞,並探討DA誘導的基因表現與自噬通量的變化。結果顯示MTF1過表現,可顯著增強DA處理所造成的PC12細胞存活率,由95±3 %降到57±3 %。免疫細胞化學(immunocytochemistry)測定顯示,DA可促使MTF1由細胞質中易位至細胞核中 (共定位相關係數為0.4),而Zn2+螯合劑可逆轉此比例為0.1;顯示[Zn2+]i 的變化,是MTF1進入細胞核的重要因素。而當在PC12細胞中同時表現MTF1與細胞自噬體(autophagosome)的標記蛋白EGFP-LC3,以計算DA處理所造成的自噬體數目,結果顯示,MTF1會顯著增加DA處理所增加的自噬體數目,由7增加為9.5。而為瞭解MTF1是否會影響細胞自噬相關基因表現,我們設計了9組主要自噬相關基因(Atg基因)的引子,進行qPCR試驗,結果顯示MTF1會影響DA處理所造成的幾種主要Atg基因的表現,顯示MTF1具有調控Atg基因的能力。以生物信息學分析顯示,幾個Atg基因的增強子區域,含有多個MRE結合位點,這支持MTF1可能與這些Atg基因結合。因此我們的結果說明,DA透過DA受體-Zn2+-MTF1-Atg途徑,誘導自噬基因表現,以調節自噬通量。本研究結果有助於深入了解,Zn2+恆定如何調控細胞自噬和隨後的細胞死亡,並提供更多關於神經退化的資訊。zh_TW
dc.description.abstractMTF1 (metal-regulatory transcription factor 1) senses zinc ion (Zn2+) and binds to MRE (metal response elements) at the enhancer regions of various genes. Dopamine (DA) is a neurotransmitter and functions when binding with G protein-coupled receptors. Our previous reports show that DA treatment elevates the intracellular zinc concentration ([Zn2+]i), which is a prerequisite for DA-induced autophagic flux and cell death in PC12 cells. However, it is not clear the roles MTF1 play in DA-induced autophagy. In this report, we overexpressed MTF1 in PC12 cells and examine the DA-induced changes in gene expression and autophagic flux. Our results showed that MTF1 overexpression enhanced the cell death in DA-treated PC12 cells from 95 ± 3 % to 57 ± 3 % comparing to control groups. The immunocytochemistry assay showed that MTF1 translocated from cytosol to nucleus in DA-treated cells by 0.4 (colocalization coefficient) which could be reversed by Zn2+ chelator to 0.1, similar to control group, indicating that DA-induced elevation in [Zn2+]i can trigger the translocation of overexpressed MTF-1 to the nucleus. MTF1 overexpression enhanced the formation DA-induced autophagosome puncta, represented by the co-expressed EGFP-LC3, from 7 ± 0.5 of control group to 9.5 ± 0.5 per cell. To examine the changes in gene expression profile, we used qPCR to analyze the expression of major autophagy-related genes (Atg genes). The results show that MTF1 overexpression changed the expression profile of several major Atg genes, implying that MTF1 has a potential to regulate Atg genes. Our bioinformatics analysis revealed that the enhancer regions of several Atg genes contain MRE binding sites, suggesting the possible binding of MTF1 to these Atg genes. In conclusion, our results demonstrate that DA-induced autophagy is via the DA receptor-Zn2+-MTF1-Atg pathway to modulate the autophagic flux. This study provides insights into the importance of Zn2+ homeostasis in modulating the DA-induced autophagy and subsequent cell death, especially their roles in neurodegenerative disorders.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:33:27Z (GMT). No. of bitstreams: 1
ntu-108-R04b21033-1.pdf: 2502122 bytes, checksum: 6354752bae21bd0bf3dd965813913555 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iii
1. Introduction 1
1.1 Neurodegenerative diseases 1
1.2 Autophagy and neurodegenerative diseases 2
1.3 Zinc and neurodegenerative diseases 3
1.4 Zinc and autophagy 5
1.5 Zn2+-sensing MTF1 with protective effects 6
1.6 Dopamine and zinc in autophagy-mediated cell death 6
1.7 Aims 8
2. Materials and Methods 9
2.1 Chemicals and Reagents 9
2.2 Cell culture 9
2.3 Plasmid construction and transfection 9
2.4 Drug treatment 10
2.5 Immunocytochemistry and fluorescence microscopy 10
2.6 Cell viability assay 11
2.7 Quantitative RT-PCR (qRT-PCR) 11
2.8 Bioinformatics analysis 11
2.9 Data analysis 12
3. Results 13
3.1 MTF1 overexpression enhanced cell death in DA-treated PC12 cells 13
3.2 TPEN suppressed the DA-induced cell death in PC12 cells 13
3.3 DA induced MTF1 translocation from cytosol to nucleus in PC12 cells 14
3.4 MTF1 overexpression enhanced the DA-induced autophagosome formation 15
3.5 MTF1 overexpression regulated the DA-induced Atg gene expression profiles 16
3.6 Computational MTF1 transcriptional binding sites in major autophagy-related (Atg) genes 17
4. Discussion 18
4.1 Dopamine and zinc in autophagy-mediated neurotoxicity and neurodegenerative diseases 18
4.2 MTF1 induced significant cell death in DA toxicity 19
4.3 MTF1 showed rapid nuclear translocation upon DA treatment 20
4.4 MTF1 induced increased autophagosome number and autophagy response in DA toxicity 21
4.5 MTF1 increased autophagy-related (Atg) gene expressions in DA toxicity 21
4.6 MTF1 might directly bind on promoter regions of Atg genes by bioinformatics study 22
4.7 Zn2+ homeostasis is of critical importance to neurodegenerative disorders 22
4.8 Future studies: Reporter gene assay and chromatin immunoprecipitation (ChIP) 26
5. References 27
6. Tables 39
Table 1 Primer sequences designed for Atg genes 39
Table 2 Computational analysis of putative transcriptional binding sites for MTF1 in major Atg genes 40
7. Figures 41
Figure 1 MTF1 overexpression enhanced DA-induced cell death in PC12 cells 41
Figure 2 TPEN suppressed the DA-induced cell death in PC12 cells 42
Figure 3 DA induced MTF1 translocation from cytosol to nucleus in PC12 cells 43
Figure 4 MTF1 overexpression enhanced the DA-induced autophagosome formatio 45
Figure 5 TPEN suppressed DA-induced autophagosome increase 46
Figure 6 MTF1 overexpression regulated the DA-induced Atg gene expression profiles 47
dc.language.isoen
dc.titleZn2+/MTF1在多巴胺活化PC12細胞中自噬相關基因之表現調控zh_TW
dc.titleZinc-responsive MTF1 Mediates Dopamine-induced Autophagy-related Gene Expressions in PC12 cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李怡萱(Yi-Hsuan Lee),廖永豐(Yung-Feng Liao),梁有志(Yu-Chih Liang)
dc.subject.keyword多巴胺,細胞自噬,鋅離子,細胞死亡,MTF1,zh_TW
dc.subject.keyworddopamine,autophagy,zinc,cell death,MTF1,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201902605
dc.rights.note未授權
dc.date.accepted2019-08-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved