請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21405完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | |
| dc.contributor.author | Tzu-Chi Lin | en |
| dc.contributor.author | 林子琦 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:33:10Z | - |
| dc.date.copyright | 2019-08-13 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-07 | |
| dc.identifier.citation | Borge, R., Artíñano, B., Yagüe, C., Gomez-Moreno, F.J., Saiz-Lopez, A., Sastre, M., Narros, A., García-Nieto, D., Benavent, N., Maqueda, G., Barreiro, M., Manuel de Andrés, J., Cristóbal, A. (2018). Application of a short-term air quality action plan in Madrid (Spain) under a high-pollution episode - Part I: Diagnostic and analysis from observations. Science of the Total Environment, 635, 1561-1573.
Borgea, R., Santiago, J.S., de la Paza, D., Martín, F., Domingo, J., Valdés, C., Sánchez, B., Rivas, E., Rozas, M.T., Lázaro, S., Péreza, J., Fernández, A. (2018). Application of a short-term air quality action plan in Madrid (Spain) under a high-pollution episode - Part II: Assessment from multi-scale modelling. Science of the Total Environment, 635, 1574-1584. Cheng, F.Y., Chin, S.C., Liu, T.H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmospheric Environment, 54, 714-727. Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T. (2008). The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of the Total Environment, 399, 1-3. Chuang, M.T., Lee, C.T., Hsu, H.C. (2018). Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. Environmental Management, 227, 10-22. Eeftens, M., Beekhuizen, J., Beelen, R., Wang, M., Vermeulen, R., Brunekreef, B., Huss, A., Hoek, G. (2013). Quantifying urban street configuration for improvements in air pollution models. Atmospheric Environment, 72, 1-9. Eeftens, M., Beelen, R., Hoogh, K.D., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Deḋele, A., Dons, E., Nazelle, A. (2012). Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project, Environmental Science & Technology, 46, 11195-11205. EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation, Atmospheric Environment, 107, 118-128. Gugamsetty, B., Wei, H., Liu, C.N., Awasthi1, A., Hsu, S.C., Tsai, C.J., Roam, G.D., Wu, Y.C., Chen C.F. (2012). Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization”, Aerosol and Air Quality Research, 12, 476-491. Gardner, M. W., Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmospheric Environment, 32, 2627-2636. Gao, M., Yin, L., Ning, J. (2018). Artificial neural network model for ozone concentration estimation and Monte Carlo analysis, Atmospheric Environment, 184, 129-139. He, H.D., Li, M., Wang, W.L., Wang, Z.Y., Xue, Y. (2018). Prediction of PM2.5 concentration based on the similarity in air quality monitoring network, Building and Environmental, 137, 11-17. Ho, H.C., Wong, M.S., Yang, L., Chan, T.C., Bilal, M. (2018). Influences of socioeconomic vulnerability and intra-urban air pollution exposure on short-term mortality during extreme dust events, Environmental Pollution, 235, 155-162. Hochreiter, S., Jürgen S. (1997). Long Short-Term Memory, Neural Computation, 9, 1735-1780 Huang C.J., Kuo P.H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors, 18. Kalhor, M., Bajoghli, M. (2017). Comparison of AERMOD, ADMS and ISC3 for incomplete upper air meteorological data (case study: Steel plant), Atmospheric pollution research, 8, 1203-1208. Kaminska, J.A. (2018) The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław, Environmental Management, 217, 164-174. Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H. (2018). Year-long simulation of gaseous and particulate air pollutants in India, Atmospheric Environment, 180, 244-255. Lasry, F., Coll, I., Fayet, S., Havre, M., Vautard, R. (2007). Short-term measures for the control of ozone peaks: expertise from CTM simulations. Atmospheric Chemistry, 57, 107-134. Liang, W.J., and Yang, H.Y. (1992). The relationship between Taiwan air quality and weatherpatterns. Taiwan EPA report. Maji, K.J., Dikshit A.K., Arora, M., Deshpande, A. (2018) Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Science of the Total Environment, 612, 683-693. Mishra, D., Goyal, P., Upadhyay, A. (2015). Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India, Atmospheric Environment, 102, 239-248. Qin, S., Liu, F., Wang, J., Sun, B. (2014). Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models, Atmospheric Environment, 98, 665-675. Righini, G., Cappelletti, A., Ciucci, A., Cremona, G., Piersanti, A., Vitali, L., Ciancarella, L. (2014). GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data, Atmospheric Environment, 97, 121-129. Seigneur, C., Hudischewskyj, A.B., Seinfeld, J.H., Whitby, K.T., Whitby, E.R., Brock J.R., Barnes, H.M. (1986). Simulation of Aerosol Dynamics: A Comparative Review of Mathematical Models. Science of Aerosol Science and Technology, 5, 205-222 Setton, E., Marshall, JD., Brauer, M., Lundquist, KR., Hystad, P., Keller, P., Cloutier-Fisher, D. (2011). The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. Exposure Science and Environmental Epidemiology, 21, 42-48. Thunis, P., Degraeuwe, B., Pisoni, E., Meleux, F., Clappier, A. (2017). Analyzing the efficiency of short-term air quality plans in European cities, using the CHIMERE air quality model. Air Qual. Atmos. Health, 10 (2), 235-248. Voukantsis, B.P.D., Karatzas, K., Kukkonen, J., Räsänen, T., Karppinen, A., Kolehmainen, M. (2011). Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment, 409, 1266-1276. Wang, J., Song, G. (2018). A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction. Neurocomputing, 314, 198-206. Wang, S., Zhao M., Xing, J., Wu, Y., Zhou, Y., Lei, Y., He, K., Fu, L., Hao, J. (2010). Quantifying the Air Pollutants Emission Reduction during the 2008 Olympic Games in Beijing, Environmental Science & Technology, 44, 2490-2496. Yassin, M.F., Al-Shatti, L.A., Al Rashidi, M.S. (2018). Assessment of the atmospheric mixing layer height and its effects on pollutant dispersion, Environmental Monitoring and Assessment, 190. 羅思懿 (2002)。導致台灣地區冷季區域性PM10高污染之氣象條件分析,國立臺灣大學大氣科學研究所。 曾韋勳 (2012)。高屏大氣懸浮微粒於不同天氣型態之特徵與氣象因子關聯性研究。國立成功大學環境工程研究所。 劉致均 (2016)。以支持向量機方法透過時空特徵進行都市空氣品質之預測,國立臺灣大學環境工程學研究所。 美國國家海洋暨大氣總署,2019,全球歷史氣象資料。https://www.noaa.gov 香港天文台,2019,亞洲歷史天氣圖。 https://www.hko.gov.hk/wxinfo/currwx/wxchtc.htm 臺北市環保局,2013,空氣污染防治計畫品質計畫。 臺北市環保局,2018,臺北市空氣品質不良應變及分析計畫。 行政院環保署,2013,空氣污染成因分析與推動改善策略工作計畫。 行政院環境保護署,2019,2016至2018空氣品質監測歷史資料。 行政院交通部氣象局,2019,2016至2018氣象監測歷史資料。 行政院環境保護署,2018,模式支援中心。https://aqmc.epa.gov.tw/ 行政院環境保護署,2018,空氣品質監測網空氣品質指標各項污染物。https://taqm.epa.gov.tw/taqm/tw/b0202.aspx 行政院環境保護署,2015,臺灣空氣污染排放量[TEDS 9.0]。 台灣電力公司,2018,電力供應資料與歷史降載資料。 https://www.taipower.com.tw/tc/index.aspx 國家災害防救科技中心,2018,氣象組天氣與氣候監測網。https://watch.ncdr.nat.gov.tw | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21405 | - |
| dc.description.abstract | 高濃度空氣污染事件可能增加民眾的健康風險、對健康產生立即性的危害,因此許多國家開始實施空氣品質管理的短期應變計畫;我國政府也在民國106年修正了<空氣品質嚴重惡化緊急防制辦法>,希望以短期空氣品質管理應變措施,減緩高濃度事件日的時間與濃度值;然而目前關於短期應變措施的研究較少,且機制模型存在短期的預測限制,無法有效得知短期作為對於實際濃度改變情形。
本研究目的在於評估短期作為成效之研究方法上的不足,以北部空品區為研究地點,選定在三種天氣型態下的降載策略及一交通管制策略為案例,其中降載作為中減量的目標污染物PM10與PM2.5濃度、交通作為中目標污染物NO2、O3濃度;以深度學習的長短期記憶模型(Long Short-Term Memory, LSTM)預測無短期作為下的空氣品質惡化濃度,再利用統計檢定方法分析應變作為前後的濃度區間範圍及濃度減量的可能,並以空氣污染物傳輸模式模擬電力業降載時的影響範圍與效益,作為空間中的輔助資訊。結果顯示,預測模型在後一小時、後三小時中表現極佳;其中北部空品區禁車的短期應變作為確實使得當日的NO2與O3濃度觀測值下降,對於降載案例中的PM10及PM2.5濃度而言,實施短期應變作並沒有辦法使得濃度明顯降低,但以有效性濃度差值解釋,高壓迴流與鋒前暖區兩個天氣型態下,降載作為可使得PM10及PM2.5濃度下降的機率顯著增加;對於高壓迴流的天氣型態而言,降載影響區域較為局部,而鋒前暖區的天氣型態在全區中有較廣泛的削減百分比,高壓推擠型則沒有明顯的降載成效。 本研究創新利用深度學習的方法對真實減量濃度作出解釋,輔助以空氣污染物傳輸模型探討影響範圍與削減受益地區,以濃度數值與空間分析兩個面向,將既有方法結合新興數據科學的分析方式,對於策略擬定及短期應變作為效益分析提供參考依據。 | zh_TW |
| dc.description.abstract | High air pollutant incidents increase people's health risks definitely, and the possibility of immediate harm to health may also increase. At present, more and more countries are beginning to implement short-term plans for air quality management. Our government also revised the 'Emergency Prevention Measures for Severe Deterioration of Air Quality' in 2017, by utilizing short-term measures as a mean to reduce the time and concentration of high-concentration event days; however, few studies on short-term contingency measures were found; assessments on short-term measures also faced limitation due to high variation of small-scale emissions and meteorological conditions in a timely manner.
The aim of this study is to improve the deficiencies in the assessment of short-term contingency measures. With the northern air quality zone of Taiwan selected as study area, this study analyzed the validity analysis and benefit evaluation of the load reduction of power plant strategy within three weather patterns for target reduction of PM10 and PM2.5 concentration, and a traffic strategy for target reduction of NO2 and O3 concentration. First, the deep learning prediction model simulates the air quality deterioration concentration under the baseline condition (no pollutant reduction action), and the statistical analysis method is used to test the possibility and effectiveness of target pollutant reduction strangies; then, using air the pollutant transport mode simulates the impact range of the power industry and the efficiency in different regions during load shedding. The results showed that the model prediction ability performed extremely well within one hour and three hours after the prediction. The traffic case showed that the zero-car event of short-term plans in the northern air quality zone is indeed the effect of reducing the NO2 and O3 concentration observations on the day, yet the load reduction of power plant strategy is not implemented as the apparent concentration for the PM10 and PM2.5 concentrations. The concentration range was used to explain the difference between the two weather patterns: High Pressure Peripheral Circulation (HPPC) and Warm Area Ahead of a Front (WAF), and the implementation of power plant emission reductions in both weather patterns tended to reduce the concentration of PM10 and PM2.5. HPPC affected areas were more local and the WAF had a relatively average reduction percentage in the whole area, while the High Pressure System Pushing (HPP) type had no obvious load reduction effect. This research uses the deep learning method to explain the real concentration reduction, and assists the air pollutant transport model to explore the scope of impact and reduce the benefit areas. Combining the existing methods and the analysis methods of emerging data sciences, the two aspects of concentration and spatial analysis provide reference for strategy formulation and short-term air quality contingency measures as benefit analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:33:10Z (GMT). No. of bitstreams: 1 ntu-108-R06541210-1.pdf: 115648142 bytes, checksum: 6217a919cdb53d2aa08032898a2343db (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 iv
Abstract ii 目錄 iv 圖目錄 vi 表目錄 viii 第一章、緒論 1 1-1研究動機 1 1-2研究目的與流程 2 第二章、文獻回顧 5 2.1空氣品質管理 5 2.1.1 空氣污染物定義與來源 5 2.1.2 空氣品質影響因子 8 2.2空氣污染模擬與預測 11 2.2.1空氣污染傳輸模擬數值模式 12 2.2.2機器學習於空氣品質預測之應用 14 2.3空氣品質惡化之極端事件 18 2.3.1 高污染事件健康風險 18 2.3.2 好發天氣型態 19 2.4短期應變策略 20 2.4.1空氣品質短期應變作為 20 2.4.2 空氣品質短期應變作為評估方法 21 第三章、研究方法 27 3.1 研究範疇 29 3.1.1研究地點 29 3.1.2 目標污染物 30 3.2短期空氣品質管理應變措施案例盤查 32 3.2.1 天氣型態分類 32 3.2.2 空氣品質短期應變策略 37 3.3短期應變策略有效性分析 41 3.3.1 LSTM建模 41 3.3.2 有效性檢定 45 3.4影響範圍模擬 46 3.4.1 情境模擬流程 46 3.4.2 空氣污染物傳輸模式 47 第四章、結果與討論 51 4.1 模型預測表現分析 51 4.1.1變量權重分析 51 4.1.2模型預測能力 53 4.2 短期應變作為有效性分析 62 4.2.1 交通作為 62 4.2.2 電廠降載 65 4.2.3 有效性檢定 75 4.3 降載影響範圍與效益評估 77 4.3.1 案例模擬條件 77 4.3.2 降載效益評估 81 4.4 案例綜合討論 88 4.4.1 各案例氣象條件差異 88 4.4.2 短期應變策略檢討與建議 93 第五章、結論與建議 95 5.1結論 95 5.2建議 97 第六章、參考文獻 99 附錄 104 AERMOD模式資料 104 各案例天氣圖 108 | |
| dc.language.iso | zh-TW | |
| dc.title | 短期空氣品質應變措施於多種天氣型態之有效性分析與效益評估—以北部空品區為例 | zh_TW |
| dc.title | Validity Analysis and Benefit Evaluation of Short-term Air Quality Contingency Measures under Multiple Weather Types: in the Northern Air Quality Zone | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 駱尚廉,蕭大智 | |
| dc.subject.keyword | 空氣污染,高濃度事件,空氣品質管理,短期應變作為,減量措施成效評估, | zh_TW |
| dc.subject.keyword | Air pollution,High concentration events,Short-term air quality contingency measures,Air quality management,Abatement measures effectivity, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201902700 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 112.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
