Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周元昉(Yuan-Fang Chou)
dc.contributor.authorChun-Hung Changen
dc.contributor.author張均鴻zh_TW
dc.date.accessioned2021-06-08T03:32:26Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-09
dc.identifier.citation[1] D. Ensminger and L. J. Bond, Ultrasonics : fundamentals, technologies, and applications. CRC Press, 2011.
[2] K. F. Graff, Wave Motion in Elastic Solids. Dover Publications, 1975.
[3] E. Eisner, “Design of Sonic Amplitude Transformers for High Magnification,” J. Acoust. Soc. Am., vol. 35, no. 9, pp. 1367–1377, Sep.1963.
[4] “Piezoelectric transducer design.” [Online]. Available: http://www.ultrasonic-resonators.org/design/transducers/transducer_design.html. [Accessed: 04-Nov-2018].
[5] B. Jaffe, R. S. Roth, andS. Marzullo, “Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate,” J. Res. Natl. Bur. Stand. (1934)., vol. 55, no. 5, p. 239, 1955.
[6] A. Bangviwat, H. K. Ponnekanti, andR. D. Finch, “Optimizing the performance of piezoelectric drivers that use stepped horns,” J. Acoust. Soc. Am., vol. 90, no. 3, pp. 1223–1229, Sep.1991.
[7] K. H. W. Seah, Y. S. Wong, and L. C. Lee, “Design of tool holders for ultrasonic machining using FEM,” J. Mater. Process. Technol., vol. 37, no. 1–4, pp. 801–816, Feb.1993.
[8] A. Lal andR. M. White, “Micromachined silicon ultrasonic atomizer,” IEEE Ultrason. Symp. Proc., vol. 1, pp. 339–342, 1996.
[9] D.-A. Wang, W.-Y. Chuang, K. Hsu, andH.-T. Pham, “Design of a Bézier-profile horn for high displacement amplification,” Ultrasonics, vol. 51, no. 2, pp. 148–156, Feb.2011.
[10] J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials. Springer Berlin Heidelberg, 1990.
[11] Dale Ensminger;Foster B. Stulen, Ultrasonics-Data, Equations, and Their Practical Uses. CRC Press, 2008.
[12] D. Guillon et al., “Particle prevention during ultrasonic welding process,” PCIM Eur., no. June, pp. 5–7, 2018.
[13] R. Singh andJ. S. Khamba, “Ultrasonic machining of titaniμm and its alloys: A review,” J. Mater. Process. Technol., vol. 173, no. 2, pp. 125–135, Apr.2006.
[14] P. Hu, J. Zhang, Z. Pei, andC. Treadwell, “Modeling of material removal rate in rotary ultrasonic machining: designed experiments,” J. Mater. Process. Technol., vol. 129, no. 1–3, pp. 339–344, Oct.2002.
[15] H. Lian, Z. N.Guo, andW. Zhao, “The design of multi-function CNC ultrasonic machine tools,” Electron. Commun. Control, pp. 1102–1105, Sep.2011.
[16] 鄭志孝, “超音波傅立葉放大器設計與液滴霧化之研究,” 國立臺灣大學機械工程學研究所博士論文, 2012.
[17] V. N.Khmelev, A.V.Shalunov, M.V.Khmelev, A.V.Shalunova, andD.V.Genne, “Ultrasonic atomizers of nanomaterials,” in 12th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, EDM’2011 - Proceedings, 2011, pp. 305–309.
[18] CRAIG FREUDENRICH P, “Ultrasonic Welding and Friction.” [Online]. Available: https://science.howstuffworks.com/ultrasonic-welding1.htm. [Accessed: 04-Nov-2018].
[19] D. Ensminger, Ultrasonics, the low- and high-intensity application. New York: M.Dekker, 1973.
[20] B. Behera, S. Sahoo, andL. Patra, “Finite Element Analysis of Ultrasonic Stepped Horn,” in AICTE Sponsored National Conference on Emerging Trend & its Application in Engineering, 2011, no. June, pp. 60–64.
[21] S. C.Tsai, Y. L.Song, T. K.Tseng, Y. F.Chou, W. J.Chen, andC. S.Tsai, “High-Frequency, Silicon-Based Ultrasonic Nozzles Using Multiple Fourier Horns,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 3, pp. 277–285, Mar.2004.
[22] A. Lal, “Silicon-based ultrasonic surgical actuators,” in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), 2002, vol. 6, pp. 2785–2790.
[23] A. M.Sánchez, M.Sanz, R.Prieto, J. A.Oliver, P.Alou, andJ. A.Cobos, “Design of Piezoelectric Transformers for Power Converters by Means of Analytical and Nμmerical Methods,” IEEE Trans. Ind. Electron., vol. 55, no. 1, p. 79, 2008.
[24] C. Volosencu, “Control system for ultrasonic welding devices,” in 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, 2008, pp. 135–140.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21377-
dc.description.abstract超音波技術已相當成熟,尤其是功率超聲的部分,其有許多延伸出來的技術,如超音波切削、超音波焊接、超音波霧化等等,然而由於換能器能轉換的振幅有其極限,故常會加上超音波放大器放大其振幅。本研究主要探討常見的懸鏈線型、指數型、錐體型、傅立葉型這四種放大器,在軸對稱放大器與二維放大器的差異,並討論各參數對其影響。
本文首先描述四種放大器外形曲線的推導過程,而後將其與三維模擬進行比較,了解其一維近似理論與三維模擬的差異,並討論傅立葉放大器參數變化影響,以找尋更佳傅立葉型外形曲線,在討論軸對稱放大器其形狀因子與長度誤差對其行為的影響,由於微機電製程的限制,利用矽晶片製作厚度不變的二維放大器,故討論軸對稱放大器與二維放大器之差異,討論放大器連接換能器或連接多個放大器等對頻率之影響,而後將最後設計放大器透過微機電製程製作,經過量測結果比較,頻率誤差比從 0.12 % ~ 1.77 %不等。
zh_TW
dc.description.abstractUltrasonic technology is quite mature, especially in the part of power ultrasound, which has many extended technologies, such as ultrasonic cutting, ultrasonic welding, ultrasonic atomization, etc. However, since the transducer convert the amplitude has its limit. Therefore, an ultrasonic amplifier is often added to amplify its amplitude. This study mainly discusses the differences between the four types of common catenary, exponential, cone, and Fourier amplifiers,and the difference between the axisymmetric amplifier and the two-dimensional amplifier, and discusses the influence of various parameters on it.
First,the study describes the derivation process of the four amplifier shape curves, and then compares it with the three-dimensional simulation to understand the difference between the one-dimensional approximation theory and the three-dimensional simulation, and discusses the influence of the Fourier amplifier parameter variation, and has found a better Fourier shape curve. In the discussion of the influence of the shape factor and length error on the behavior of the axisymmetric amplifier, due to the limitation of the microelectromechanical process, the two-dimensional amplifier with the same thickness is fabricated by using the germaniμm wafer. Therefore, the difference between the axisymmetric amplifier and the two-dimensional amplifier is discussed. The effect of the connection of the transducer or the connection of multiple amplifiers on the frequency, and then the final design of the amplifier through the micro-electromechanical process. After the measurement results are compared, the frequency error ratio ranges from 0.12% to 1.77%.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:32:26Z (GMT). No. of bitstreams: 1
ntu-108-R04522529-1.pdf: 32143431 bytes, checksum: ad3a5fbe7ae5e3d901f0f0a574bf3af8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xiii
符號表 xv
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.2.1 超音波換能器 1
1.2.2 超音波放大器 2
1.2.3 超音波技術 3
1.3 本文內容 5
第二章 超音波放大器理論 6
2.1 變截面放大器統御方程式 6
2.2 幾何外形 7
2.2.1 懸鏈線型[1] 7
2.2.2 指數型[2] 9
2.2.3 傅立葉型[3] 10
2.2.4 錐體型[2] 12
2.3 傅立葉型參數之選擇 13
2.4 各種放大器的特色 18
第三章 超音波放大器有限元素模擬 27
3.1 鋼製20 kHz軸對稱放大器 27
3.1.1 模擬設定 27
3.1.2 一維近似理論與三維模擬比較 28
3.1.3 傅立葉型優化 36
3.1.4 形狀因子與長度誤差對放大器影響 37
3.2 二維放大器 56
3.2.1 軸對稱放大器與二維放大器比較 56
3.2.2 矽基放大器設計 74
3.2.3 一維參數用於矽基二維放大器模擬 74
3.2.4 單節放大器與多節放大器比較 78
3.2.5 換能器設計與連接方式 83
3.2.6 換能器連接放大器之影響與連接多個放大器之影響 85
3.2.7 固定端對放大器影響 90
3.3 模擬結果 93
第四章 二維放大器之製作 94
4.1 放大器本體製程 94
4.2 放大器與壓電片黏合 102
4.3 放大器夾具製作 106
第五章 實驗 114
5.1 放大器共振頻率量測 114
5.2 放大器模態量測 127
第六章 結果與討論 141
6.1 量測結果 141
6.2 結論 141
REFERENCE 142
dc.language.isozh-TW
dc.title軸對稱與二維超音波放大器特性之差異zh_TW
dc.titleDifferences between Axial Symmetry and Two Dimensional Ultrasonic Horns Characteristicsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧中仁(Chung-Jen Lu),王富正(Fu-Cheng Wang)
dc.subject.keyword軸對稱放大器,二維放大器,微機電製程,超音波放大器,zh_TW
dc.subject.keywordAxisymmetric Amplifier,Two-Dimensional Amplifier,MEMS Process,Ultrasonic Amplifier,en
dc.relation.page143
dc.identifier.doi10.6342/NTU201902958
dc.rights.note未授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
31.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved