Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭憶中(I-Chung Cheng)
dc.contributor.authorYan-Rung Suen
dc.contributor.author蘇彥融zh_TW
dc.date.accessioned2021-06-08T03:32:11Z-
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-11
dc.identifier.citation1. INITIATIVE, T.N.N., Supplement to the President’s 2018 Budget. 2017: p. 11.
2. Limited., P.S.M.R.P., Global Nanoporous Materials Market Size, Share, Development, Growth and Demand Forecast to 2022 – Industry Insights by Type. 2016.
3. Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion gilding. Nature, 1979. 282.
4. Lehao Liu, M.L., Jing Lyu, Tingkai Zhao, and Tiehu Li, Facile and Green Preparation of Three-Dimensionally Nanoporous Copper Films by Low-Current Electrical Field-Induced Assembly of Copper Nanoparticles for Lithium-Ion Battery Applications. Journal of Materials Engineering and Performance, 2017. 27: p. 4680-4692.
5. J.R. Hayes, A.M.H., J. Biener, A.V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn–Cu. Materials Research Society, 2006. 21.
6. Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and and X. Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. American Chemical Society, 2008.
7. W.B. Liu, S.C.Z., N. Li, J.W. Zheng, and Y.L. Xing, A Facile OnePot Route to Fabricate Nanoporous Copper with Controlled Hierarchical Pore Size Distributions Through Chemical Dealloying of Al-Cu Alloy in an Alkaline Solution. Microporous Mesoporous Mater, 2011. 138: p. 1-7.
8. T. Song, M.Y., Z. Shi, A. Atrens, and M. Qian, Creation of Bimodal Porous Copper Materials by an Annealing-Electrochemical Dealloying Approach. Electrochim. Acta, 2015. 164: p. 288-296.
9. K.T. Lee, J.C.L., N.S. Ergang, S.M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Adv. Funct. Mater, 2005. 15: p. 547-556.
10. L. Liu, B.G.C., S.O. Tung, T. Hu, Y. Liu, T. Li, T. Zhao, and N.A. Kotov, Low-Current Field-Assisted Assembly of Copper Nanoparticles for Current Collectors. Faraday Discuss, 2015. 18: p. 383-401.
11. Majid Mirzaee, C.D., Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Iranian Chemical Society, 2018.
12. Lu-Yang Chen, J.-S.Y., Takeshi Fujita, and Ming-Wei Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Adv. Funct. Mater, 2009. 19: p. 1221-1226.
13. Mei Li, Y.Z., Haoran Geng, Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. Journal of Porous Materials, 2012. 19(5): p. 791-796.
14. Lechtman, H., Pre-Columbian Surface Metallurgy. SCIENTIFIC AMERICAN, 1984.
15. C. Calvert, R.J., XLI.—Action of acids upon metals and alloys. Journal of the Chemical Society, 1886(0): p. 434-454.
16. Jonah Erlebacher, M.J.A., Alain Karma, Nikolay Dimitrov & Karl Sieradzki Evolution of nanoporosity in dealloying. Nature, 2001. 410: p. 450-453.
17. Jonah Erlebacher, R.S., Hard Materials with Tunable Porosity. MRS BULLETIN, 2009. 34: p. 561-569.
18. A.J. Smith, D.L.T., THE PREPARATION OF SKELETAL CATALYSTS. Annual Review of Materials Reasearch, 2005. 35: p. 127-142.
19. Ian McCue, E.B., Bernard Gaskey, and Jonah Erlebacher, Dealloying and Dealloyed Materials. Annual Review of Materials Reasearch, 2016. 46: p. 263-286.
20. Erlebacher, J., An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society, 2004. 151: p. 614-626.
21. J.Erlebacher, K.S., Pattern formation during dealloying. Scripta Materialia, 2003. 49(10): p. 991-996.
22. K. Sieradzki , R.R.C., K. Shukla & R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys. Philosophical Magazine A, 1989. 59(4): p. 713-746.
23. Artymowicz DM, E.J., Newman RC. , Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philosophical Magazine A, 2009. 89(21): p. 1663-1693.
24. M.Gattrell, N.G.C., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19.
25. Sujat Sen, D.L.a.G.T.R.P., Electrochemical Reduction of CO2 at Copper Nanofoams. ACS Catalysis, 2014. 4: p. 3091-3095.
26. Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001: p. 257-261.
27. Joe Walas, E.C.U. Sealing Glass Ampules or Samples under Vacuum. [cited 2019 July 7]; Available from: http://www.public.asu.edu/~aomdw/ampoule/Page_1.html.
28. Atmospheres, I. What Is Induction Heating? 2019; Available from: http://www.gh-ia.com/induction_heating.html.
29. Gigap Han, J.H.U., Hyeji Park, Kicheol Hong,Won-Sub Yoon, Heeman Choe, Hierarchically structured nanoporous copper for use as lithium-ion battery anode. Scripta Materialia, 2019. 163: p. 9-13.
30. Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and Xiufang Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. Journal of Physical Chemistry C, 2009. 113: p. 6694-6698.
31. Murray, J.L., The aluminium-copper system. International Metals Reviews, 1985. 30: p. 211-236.
32. A. Ourdjini, J.L.R.E., Eutectic spacing selection in Al–Cu system. Materials Science and Technology, 1994. 10(4): p. 312-318.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21367-
dc.description.abstract奈米多孔銅有著密度低、質量輕、高表面積、等優點,又擁有良好的導電性、導熱性以及電化學穩定性,可運用於感測、催化劑、鋰電池、表面增強拉曼散射、超級電容、二氧化碳還原等等領域,是前景可期的一項新興材料。本研究旨在探討不同介金屬化合物對合成奈米多孔結構的影響,本研究以銅鋁合金中的θ與η相為例以進行討論,將不同合金相的銅鋁合金透過不同電解液以及溫度的搭配進行選擇性腐蝕以合成在微結構上各有差異的奈米多孔銅,並以二氧化碳還原反應作為應用上的測試。
首先利用真空電弧熔煉法製作四種組成比例的銅鋁前置合金(precursor alloy):Cu18Al82、Cu30Al70、Cu33Al67以及Cu37Al63。此四種合金各自含有不同比例的固溶相(α相)及介金屬化合物(θ相與η相),因此造就了不同的微結構。接著使用不同種類的電解液以及不同的環境溫度對前置合金進行自由腐蝕驅動去合金化,利用元素間還原電位的不同將活性較高的鋁成分選擇性去除,留下活性較低的銅並重組成奈米孔洞結構 (Nanoporous Cu)。藉由掃描式電子顯微鏡與能量散射光譜儀的觀察,確認在銅鋁合金產生奈米孔洞結構的情況。
本研究成功的在銅鋁合金的介金屬化合物相上合成出支架大小分布在29nm~174nm之間的奈米多孔銅結構。在不同形式的θ相同時存在時,奈米孔洞結構並不存在明顯差異。另外,在酸與鹼的電解液中,η相上的反應有所差異,於鹼中無法完全的去合金化。對於二氧化碳還原反應,目前結果顯示,支架越小的材還原效果越好,並且共晶結構所產生的微米-奈米多層次結構,有助於提升還原效果。
zh_TW
dc.description.abstractIn this study, nanoporous copper with ligament sizes ranging from 29 to 174 nm was successfully synthesized by dealloying Cu18Al82, Cu30Al70, Cu33Al67, and Cu37Al63 alloys. The purpose of this study is to investigate the effect of the intermetallic compound on the synthesis of nanoporous structure, and the θ and η phases of copper-aluminum alloy are focused.
Nanoporous copper has the advantages of light in weight, high surface area, good electrical and thermal conductivity, and wonderful electrochemical stability. It can be applied in sensing, catalyst, lithium battery, surface-enhanced Raman scattering, and carbon dioxide reduction, which is being more and more important nowadays.
Firstly, four kinds of compositional copper-aluminum precursor alloys were fabricated by vacuum arc melting: Cu18Al82, Cu30Al70, Cu33Al67, and Cu37Al63. Each of the four alloys contains different ratios of solid solution phase (α phase) and intermetallic compound (θ phase and η phase), thus creating a different microstructure.
Then, the precursor is dealloyed using different kinds of electrolytes and under different temperatures. Aluminum, which is the more electrochemically active element of the two in the precursor alloy, is selectively removed to form nanoporous copper structures (Nanoporous Cu). The effect of concentrations of electrolyte on the resultant nanoporous structure was also evaluated by the use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS).
The result shows that when two different kinds of θ phase exist at the same time, there is no significant difference between the two. Besides, the η phase can be completely dealloyed in acid but not in alkali. For the carbon dioxide reduction reaction, the current results show that the smaller the ligament of the nanoporous copper, the better the effect of the CO2 reduction, and the micro-nano multi-layer structure produced by the eutectic phase contributes to the improvement of the reduction effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:32:11Z (GMT). No. of bitstreams: 1
ntu-108-R05522749-1.pdf: 8250850 bytes, checksum: 5e9cc3fdd6e62b819fab639dd20462a6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致 謝 II
摘 要 III
Abstract IV
目 錄 V
圖 目 錄 VII
第一章 緒論 1
1.1 奈米材料到奈米多孔金屬材料 1
1.2 奈米多孔銅的發展與現況 3
1.3 研究動機 4
第二章 背景知識與文獻回顧 5
2.1去合金化法 5
2.1.1去合金化法的歷史與現狀 5
2.1.2 去合金化製備奈米多孔金屬的機制 5
2.1.3 去合金化法製造奈米多孔銅的原理 8
2.2 銅的二氧化碳還原反應 10
2.3循環伏安法測試 12
2.4 金屬融煉方式 13
2.4.1 真空封管加熱法 13
2.4.2 感應加熱法 14
2.4.3 真空電弧熔煉法 15
第三章 實驗規劃與實驗方法 17
3.1實驗規劃 17
3.2 實驗設備 19
3.3 實驗方法 26
3.3.1 Cu-Al合金熔煉與試片製備 26
3.3.2 去合金化處理 28
3.3.3 二氧化碳還原 29
第四章 銅鋁前置合金與去合金化結果 31
4.1前置合金 31
4.1.1 銅鋁前置合金的相 31
4.1.2 Cu18Al82 33
4.1.3 Cu30Al70 34
4.1.4 Cu33Al67 37
4.1.5 Cu37Al63 38
4.1.6 不同合金間比較 40
4.2 3wt%HCl自由腐蝕所產生的NPCu 42
4.2.1 前言 42
4.2.2 NPCu-18 42
4.2.3 NPCu-30 46
4.2.4 NPCu-33 50
4.2.5 NPCu-37 53
4.2.6 小結 57
4.3 10wt%NaOH自由腐蝕所產生的NPCu 59
4.3.1 前言 59
4.3.2 NPCu-18 59
4.3.3 NPCu-30 62
4.3.4 NPCu-33 66
4.3.5 NPCu-37 69
4.3.6 小結 74
4.4 二氧化碳還原測試 78
第五章 結論與未來展望 81
參考文獻 83
dc.language.isozh-TW
dc.title介金屬化合物對合成奈米多孔結構的影響—探討銅鋁合金的θ與η相zh_TW
dc.titleEffect of Intermetallic Compound on Synthesis of Nanoporous Structure with the Focus on θ and η Phases of Copper-Aluminum Alloyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志軒(Chih-Hsuan Chen),李岳聯(Yueh-lien Lee)
dc.subject.keyword奈米多孔結構,銅,去合金化,介金屬化合物,二氧化碳還原反應,zh_TW
dc.subject.keywordnanoporous,copper,dealloying,intermetallic compound,CO2 reduction,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201903091
dc.rights.note未授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved